Removal of copper (II) from aqueous solutions by sodium alginate/hydroxy apatite hydrogel modified by Zeolite
Authors
Abstract:
The study presented in this article investigated the removal of copper ions from aqueous solutions by a synthetic hydrogel-forming adsorbent polymer based on sodium alginate (SA) and hydroxy apatite (HA) nanoparticles. The effect of adding Zeolite on the adsorption performance of this hydrogel was also investigated, and the optimum amount of Zeolite was determined by changing its quantity. The FTIR spectrum determined the structure of the synthesized adsorbent; non-continuous adsorption tests were performed to study the kinetics and thermodynamics of adsorption and also the recovery of the adsorbent. The degree of adsorption of the synthesized nanocomposite was compared with that of Zeolite, and the results showed that the maximum adsorption capacities of Zeolite and the nanocomposite for Cu ions were 29.7 and 75.8 mg/g, respectively. The kinetic studies indicated that the process of adsorption of Cu ions on both absorbents followed a pseudo second order kinetic equation. It took the Zeolite and the hydrogel 90 and 120 minutes, respectively, to reach equilibrium. The thermodynamic studies showed that Cu absorption by both adsorbents matched the Langmuir isotherm very well (R2=0.99). Since adsorbent recovery and its lifespan are of significant importance in absorption processes, recovery was carried out by hydrochloric acid (2% by weight). The repulsion coefficient of the recovered adsorbent and its efficiency in five recovery cycles were measured. The results of the tests indicated that the repulsion coefficient of Cu was 70-82.75 percent and the adsorption efficiency of Cu after 5 recovery cycles was 75 percent of the initial adsorbent.
similar resources
Nitrate Removal from Aqueous Solution by Using Modified Clinoptilolite Zeolite
Background & Aims of the Study: Nitrate is one of the most important pollutants that its reduced form, nitrite, can cause serious problems for human health and environment. Adsorption with cheap sorbents such as Zeolite is the best way for removal of this pollutant. So this study aimed to apply modified Clinoptilolite Zeolite for nitrate removal. Materials & Methods...
full textFluoride Removal from Aqueous Solutions by NaOH-Modified Eucalyptus Leaves
Introduction: Fluoride (F) and its compounds are widely used in industries in which fluoride overdose leads to various detrimental diseases. In this study the effect of NaOH-modified Eucalyptus leaves on fluoride removal from aqueous solutions as a natural adsorbent was investigated. Materials and Methods: The focus of this study was on the effects of parameters such as pH (2-12), initial conc...
full textNitrate Removal from Aqueous Solution by Using Modified Clinoptilolite Zeolite
Department of Environmental Health Engineering, Tehran University of Medical Sciences, Health Faculty, Tehran, Iran. Department of Environmental Health Engineering, Tehran University of Medical Sciences, Tehran, Iran. Department of Environmental Health Engineering, Iran University of Medical Sciences, Tehran, Iran. Department of Environmental Health Engineering, Qom University of Medical Scienc...
full textRemoval of Pb(II) and Cu(II) Ions from Aqueous Solutions by Cadmium Sulfide Nanoparticles
In this study, cadmium sulfide nanoparticles (CdS NPs) were prepared, characterized and used as a new adsorbent for simultaneous removal of Pb(II) and Cu(II) ions from aqueous solutions. Using a batch adsorption method, the effects of solution pH, contact time, adsorbent dose, and temperature were studied and optimized. Removal efficiencies, higher than 98% were obtained for both the met...
full textRemoval of Dibenzothiophene from Organic Medium by Modified Zeolite
In this research, adsorption of dibenzothiophene (DBT) as a model of sulfur containing material has been studied by Pb exchanged Y-zeolite under different experimental conditions. The adsorption was kinetically fast and high adsorption capacity was obtained. The equilibrium adsorption data were analyzed using Langmuir and Freunlich isotherm models. The corresponding parameters and correlation c...
full textRemoval of copper (II) from aqueous solutions by adsorption onto granular activated carbon in the presence of competitor ions
In this work, the removal of copper from an aqueous solution by granular activated carbon (GAC) in the presence of competitor ions was studied. A batch adsorption was carried out and different parameters such as pH, contact time, initial copper concentration and competitor ions concentration were changed to determine the optimum conditions for adsorption. The optimum pH required for maximum ads...
full textMy Resources
Journal title
volume 3 issue 4
pages 185- 192
publication date 2017-10-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023