Removal of Cd2+ from Aqueous Solution by Nickel Oxide/CNT Nanocomposites
Authors
Abstract:
The present work investigates the efficiency of the nickel oxide/carbon nanotube (NiO/CNT) nanocomposite for the removal of Cd2+ metal ions from an aqueous. The NiO/CNT nanocomposite was synthesized by the direct co-precipitation method in an aqueous media in the presence of CNTs. The resulting materials were characterized by FT-IR, XRD, SEM, N2 adsorption-desorption analysis. In order to optimize the adsorption of Cd2+ ions on NiO/CNT nanocomposite, the effects of the different parameters—namely pH, contact time, initial concentration of Cd2+, and adsorbent dosage—were also studied. Experimental data revealed that the Cd2+ ions adsorption of the NiO/CNT nanocomposite was through Langmuir and Temkin isotherm models rather than the Freundlich model. The kinetic data of adsorption of Cd2+ ions on the adsorbent was best described by a pseudo-second-order equation, indicating their chemical adsorption. Thermodynamic parameters such as ΔG°, ΔH°, and ΔS° were calculated. The obtained values showed that the adsorption was spontaneous and exothermic in nature. The reusability test showed that the Cd2+ could be easily removed from the surface site of NiO/CNT nanocomposite by a 0.1 M nitric acid solution as the adsorption capacity was maintained after 5 cycles of the adsorption/desorption process. This suggests that NiO/CNT nanocomposite can be reused through many cycles of water treatment and regeneration.
similar resources
Removal of Heavy Metals from Aqueous Solution by Mordenite Nanocrystals
This study examined the ability of the synthetic mordenite nanocrystal to remove Tl(III) and As(III) from an aqueous solution. The determination of the concentration changes of H+ and OH- quantities in the acidic (pH 3) and alkali (pH 9) treated mordenite nanocrystals were done by the potentiometric titration curves. The maximum uptake capacities (Qmax) of these metal ions using the mordenite i...
full textAdsorption properties of nickel oxide nanoparticles for removal of Congo Red from aqueous solution
The effective removal of dyes from aqueous wastewaters is among the most important issues formany industrialized countries. Removal of Congo Red (CR) dye from aqueous solutions was studiedusing nickel oxide nanoparticles. The operating variables studied were initial pH of solution,adsorbents dosage, temperature and contact time. The morphological information of nickel oxidenanoparticles were ch...
full textNitrate Removal from Aqueous Solution by Using Modified Clinoptilolite Zeolite
Background & Aims of the Study: Nitrate is one of the most important pollutants that its reduced form, nitrite, can cause serious problems for human health and environment. Adsorption with cheap sorbents such as Zeolite is the best way for removal of this pollutant. So this study aimed to apply modified Clinoptilolite Zeolite for nitrate removal. Materials & Methods...
full textRemoval of Nickel Ions from Aqueous Solution by Polypyrrole Conducting Polymer
Polypyrrole (PPy) conducting polymer prepared by chemical oxidation method using FeCl3.6H2O as an oxidant has exhibited 100% adsorption efficiency for the removal of nickel ions from aqueous solution. At pH 7, 100% nickel absorption was found by the prepared polypyrrole as measured by atomic absorption spectrophotometry. At both acidic and alkaline solutions, the adsorption efficiency of PPy wa...
full textRemoval of arsenic from aqueous solution by an adsorbent nickel ferrite-polyaniline nanocomposite
Nickel ferrite-polyaniline nanocomposite has been prepared and characterized using different techniques. The prepared nanocomposite is used as an adsorbent for the removal of arsenic from aqueous solution of sodium arsenite. The effect of temperature on the equilibrium adsorption of As(III) from aqueous solution on nanocomposite has been investigated. Effect of pH (2-12), contact time (0-70 min...
full textDrastic nickel ion removal from aqueous solution by curcumin-capped Ag nanoparticles.
A completely green synthesis protocol has been adopted to obtain silver nanoaggregates capped by the natural compound (1E, 6E)-1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-diene), also known as curcumin. The synthesis has been monitored by infrared, Raman, visible and fluorescence spectroscopies. Characterization confirms that curcumin reduces and caps the nanoparticles, and such a pro...
full textMy Resources
Journal title
volume 38 issue 1
pages 141- 154
publication date 2019-02-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023