Relative n-th non-commuting graphs of finite groups

Authors

Abstract:

‎Suppose $n$ is a fixed positive integer‎. ‎We introduce the relative n-th non-commuting graph $Gamma^{n} _{H,G}$‎, ‎associated to the non-abelian subgroup $H$ of group $G$‎. ‎The vertex set is $Gsetminus C^n_{H,G}$ in which $C^n_{H,G} = {xin G‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin H}$‎. ‎Moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $H$ and $xy^{n}eq y^{n}x$ or $x^{n}yeq yx^{n}$‎. ‎In fact‎, ‎the relative n-th commutativity degree‎, ‎$P_{n}(H,G)$ the probability that n-th power of an element of the subgroup $H$ commutes with another random element of the group $G$ and the non-commuting graph were the keys to construct such a graph‎. ‎It is proved that two isoclinic non-abelian groups have isomorphic graphs under special conditions‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

relative n-th non-commuting graphs of finite groups

‎suppose $n$ is a fixed positive integer‎. ‎we introduce the relative n-th non-commuting graph $gamma^{n} _{h,g}$‎, ‎associated to the non-abelian subgroup $h$ of group $g$‎. ‎the vertex set is $gsetminus c^n_{h,g}$ in which $c^n_{h,g} = {xin g‎ : ‎[x,y^{n}]=1 mbox{~and~} [x^{n},y]=1mbox{~for~all~} yin h}$‎. ‎moreover‎, ‎${x,y}$ is an edge if $x$ or $y$ belong to $h$ and $xy^{n}eq y^{n}x$ or $x...

full text

Relative N-th Non-commuting Graphs of Finite Groups

Suppose n is a fixed positive integer. We introduce the relative n-th non-commuting graph ΓH,G, associated to the nonabelian subgroup H of group G. The vertex set is G \ C H,G in which C H,G = {x ∈ G : [x, y] = 1 and [x, y] = 1 for all y ∈ H}. Moreover, {x, y} is an edge if x or y belong to H and xy 6= yx or xy 6= yx. In fact, the relative n-th commutativity degree, Pn(H,G) the probability that...

full text

commuting and non -commuting graphs of finit groups

فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...

15 صفحه اول

On Laplacian energy of non-commuting graphs of finite groups

‎Let $G$ be a finite non-abelian group with center $Z(G)$‎. ‎The non-commuting graph of $G$ is a simple undirected graph whose vertex set is $Gsetminus Z(G)$ and two vertices $x$ and $y$ are adjacent if and only if $xy ne yx$‎. ‎In this paper‎, we compute Laplacian energy of the non-commuting graphs of some classes of finite non-abelian groups‎..

full text

Relative non-Normal Graphs of a Subgroup of Finite Groups

Let G be a finite group and H,K be two subgroups of G. We introduce the relative non-normal graph of K with respect to H , denoted by NH,K, which is a bipartite graph with vertex sets HHK and KNK(H) and two vertices x ∈ H HK and y ∈ K NK(H) are adjacent if xy / ∈ H, where HK =Tk∈K Hk and NK(H) = {k ∈ K : Hk = H}. We determined some numerical invariants and state that when this graph is planar or...

full text

A Kind of Non-commuting Graph of Finite Groups

Let g be a fixed element of a finite group G. We introduce the g-noncommuting graph of G whose vertex set is whole elements of the group G and two vertices x,y are adjacent whenever [x,y] g  and  [y,x] g. We denote this graph by . In this paper, we present some graph theoretical properties of g-noncommuting graph. Specially, we investigate about its planarity and regularity, its clique number a...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 39  issue 4

pages  663- 674

publication date 2013-09-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023