Reiter’s Properties for the Actions of Locally Compact Quantum Goups on von Neumann Algebras

Authors

Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Reiter’s Properties for the Actions of Locally Compact Quantum Groups on Von Neumann Algebras

The notion of an action of a locally compact quantum group on a von Neumann algebra is studied from the amenability point of view. Various Reiter’s conditions for such an action are discussed. Several applications to some specific actions related to certain representations and corepresentaions are presented.

full text

Locally Compact Quantum Groups. A von Neumann Algebra Approach

In this paper, we give an alternative approach to the theory of locally compact quantum groups, as developed by Kustermans and Vaes. We start with a von Neumann algebra and a comultiplication on this von Neumann algebra. We assume that there exist faithful left and right Haar weights. Then we develop the theory within this von Neumann algebra setting. In [Math. Scand. 92 (2003), 68–92] locally ...

full text

Nonlinear $*$-Lie higher derivations on factor von Neumann algebras

Let $mathcal M$ be a factor von Neumann algebra. It is shown that every nonlinear $*$-Lie higher derivation$D={phi_{n}}_{ninmathbb{N}}$ on $mathcal M$ is additive. In particular, if $mathcal M$ is infinite type $I$factor, a concrete characterization of $D$ is given.

full text

Deformation and rigidity for group actions and von Neumann algebras

We present some recent rigidity results for von Neumann algebras (II1 factors) and equivalence relations arising from measure preserving actions of groups on probability spaces which satisfy a combination of deformation and rigidity properties. This includes strong rigidity results for factors with calculation of their fundamental group and cocycle superrigidity for actions with applications to...

full text

fixed point property for banach algebras associated to locally compact groups

در این پایان نامه به بررسی خاصیت نقطه ثابت و خاصیت نقطه ثابت برای نیم گروههای برگشت پذیر چپ روی بعضی جبرهای باناخ از جمله جبر فوریه و جبر فوریه استیلتیس پرداخته شده است. برای مثال بیان شده است که اگر گروه یک گروه فشرده موضعی با همسایگی فشرده برای عنصر همانی که تحت درونریختی ها پایاست باشد آنگاه جبر فوریه و جبر فوریه استیلتیس دارای خاصیت نقطه ثابت برای نیم گروه های برگشت پذیر چپ است اگر و تنها ا...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 36  issue No. 2

pages  1- 17

publication date 2011-01-02

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023