Regeneration of СO2 Physical Solvents at Elevated Pressures in Gas-Liquid Membrane Contactor
Authors
Abstract:
In the present work, a membrane contactor with asymmetric flat-sheet poly(vinyltrimethylsilane) (PVTMS) membranes was proposed for the CO2 desorption process from physical solvents at elevated trans-membrane pressures. Different solvents were studied: water, a mixture of polyethylene glycol dimethyl ethers (Genosorb® tradename, Selexol process) and a number of ionic liquids (ILs). The compatibility of PVTMS with physical solvents was evaluated. Thorough sorption and swelling degree tests, FTIR experiments, and solvent permeation study provided insights into PVTMS-solvent interaction and allowed the selection of water, Genosorb® and 1-ethyl-3-methylimidazolium tetrafluoroborate ([Emim][BF4]) as demo solvents for proof-of-concept. CO2 desorption experiments were successfully realized at elevated trans-membrane pressure (10 bar) and different temperatures (30 and 50ºC). Increasing the temperature from 30 tо 50ºС allowed obtaining higher CO2 desorption flux for all studied solvents. The combination of such parameters as CO2 flux (up to 4.5 m3 (STP)/(m2.h)) and the pressure difference between gas and liquid phases (up to 10 bar) is the best among the available literature data. The detailed investigation of [Emim][BF4] possessing the highest CO2 flux revealed that an increase of CO2 content in [Emim][BF4] provided by increasing absorption pressure up to 20 bar resulted in a signifcant CO2 desorption flux growth up to 7.5 m3 (STP)/(m2.h). Finally, the SEM and EDXS study of membranes after CO2 desorption tests revealed the deposition of particles containing Na and F elements from ionic liquid [Emim][BF4] on the membrane surface. Nevertheless, the same study proved the stability of the membrane morphology structure at elevated transmembrane pressures even up to 20 bar.
similar resources
Correlating Physicochemical Properties of Commercial Membranes with CO2 Absorption Performance in Gas-Liquid Membrane Contactor
The gas-liquid membrane contactor (GLMC) is a promising alternative gas absorption/desorption configuration for effective carbon dioxide (CO2 ) capture. The physicochemical properties of membranes may synergistically affect GLMC performances, especially during the long-term operations. In this work, commercial polypropylene (PP) and polyvinylidene fluoride (PVDF) hollow fiber (HF) membranes wer...
full textMass Transfer Phenomena and Hydrodynamics in Agitated Gas-Liquid Reactors and Bubble Columns at Elevated Pressures: State of the Art
All important studies on the influence of pressure on mass transfer phenomena in gas-liquid systems and reactors are reviewed critically. Points of agreement and conflict are indicated and discussed. It is concluded that: (1) the initial bubble size at a single orifice decreases with increasing pressure; (2) the gas-phase mass transfer coefficient kG is inversely proportional to the pressure to...
full textSurface modification of poly(vinylidene fluoride) hollow fibre membranes for biogas purification in a gas–liquid membrane contactor system
The wetting of hollow fibre membranes decreases the performance of the liquid-gas membrane contactor for CO2 capture in biogas upgrading. To solve this problem, in this work, a poly(vinylidene fluoride) (PVDF) hollow fibre membrane for a liquid-gas membrane contactor was coated with a superhydrophobic layer composed of a combination of hydrophobic SiO2 nanoparticles and polydimethylsiloxane (PD...
full textLiquid–liquid extraction of uranium(VI) in the system with a membrane contactor
Raising role of the nuclear power industry, including governmental plans for the construction of first nuclear power plant in Poland, creates increasing demand for the uranium-based nuclear fuels. The project implemented by Institute of Nuclear Chemistry and Technology concerns the development of effective methods for uranium extraction from low-grade ores and phosphorites for production of yel...
full textThermo Physical Properties of Some Physical and Chemical Solvents at Atmospheric Pressure
ne"> In this paper, the thermal properties including molar heat capacity, CP, thermal <span style="font-si...
full textγ-Si3N4 at Elevated Temperatures and Pressures
c © 2008 by John von Neumann Institute for Computing Permission to make digital or hard copies of portions of this work for personal or classroom use is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise requires prior specific permission by the publisher ment...
full textMy Resources
Journal title
volume 4 issue 4
pages 227- 238
publication date 2018-11-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023