Refining membership degrees obtained from fuzzy C-means by re-fuzzification

Authors

  • A. Malekzadeh Department of Computer Science and Statistics, Faculty of Mathematics, K.N. Toosi University of Technology, Tehran, Iran
  • M. Javadian Department of Computer Engineering, Faculty of Information Technology, Kermanshah University of Technology, Kermanshah, Iran
  • R. Vaziri Islamic Azad University Central Tehran Branch, Tehran, Iran
  • S. Haghzad Klidbary Department of Computer Engineering, Faculty of Engineering, University of Zanjan, Zanjan, Iran
Abstract:

Fuzzy C-mean (FCM) is the most well-known and widely-used fuzzy clustering algorithm. However, one of the weaknesses of the FCM is the way it assigns membership degrees to data which is based on the distance to the cluster centers. Unfortunately, the membership degrees are determined without considering the shape and density of the clusters. In this paper, we propose an algorithm which takes the FCM clustering results and re-fuzzifies them by taking into account the shape and density of the clusters. The algorithm first defuzzifies the FCM clustering results. Then the crisp result is fuzzified again. Re-fuzzification in our algorithm has some advantages. The main advantage is that the fuzzy membership degrees of data points are obtained based on the shape and density of clusters. Adding the ability to eliminate noise and outlier data is the other advantage of our algorithm. Finally, our proposed re-fuzzification algorithm can slightly improve the FCM clustering quality, because the data points change their clusters according to similarity to the shape and density of their respective clusters. These advantages are supported by simulations on real and synthetic datasets.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Soil Property Mapping Using Fuzzy Membership Derived by Fuzzy c- Means (fcm) Clustering

This paper explores the use of fuzzy membership values generated by fuzzy c-means clustering (FCM) method to predict soil properties over space. A weighted average model was used on fuzzy membership to get soil properties. To validate the efficiency of this model, it was then compared with a multiple linear regression model between the soil property and terrain attributes. Four indices were cal...

full text

A new method for fuzzification of nested dummy variables by fuzzy clustering membership functions and its application in financial economy

In this study, the aim is to propose a new method for fuzzification of nested dummy variables. The fuzzification idea of dummy variables has been acquired from non-linear part of regime switching models in econometrics. In these models, the concept of transfer functions is like the notion of fuzzy membership functions, but no principle or linguistic sentence have been used for inputs. Consequen...

full text

CMOS Fuzzification Circuits for Linear Membership Functions

The subject of the study was hardware implementations of fuzzy controllers as CMOS analog devices on the base of implementation of fuzzy inference rules as multi-valued logic functions using summing amplifiers as building blocks. Earlier a functional completeness of summing amplifier with saturation in an arbitrary-valued logic was proven that gave a theoretical background for analog implementa...

full text

OPTIMIZATION OF FUZZY CLUSTERING CRITERIA BY A HYBRID PSO AND FUZZY C-MEANS CLUSTERING ALGORITHM

This paper presents an efficient hybrid method, namely fuzzy particleswarm optimization (FPSO) and fuzzy c-means (FCM) algorithms, to solve the fuzzyclustering problem, especially for large sizes. When the problem becomes large, theFCM algorithm may result in uneven distribution of data, making it difficult to findan optimal solution in reasonable amount of time. The PSO algorithm does find ago...

full text

Vector fuzzy C-means

Many variants of fuzzy c-means (FCM) clustering method are applied to crisp numbers but only a few of them are extended to non-crisp numbers, mainly due to the fact that the latter needs complicated equations and exhausting calculations. Vector form of fuzzy c-means (VFCM), proposed in this paper, simplifies the FCM clustering method applying to non-crisp (symbolic interval and fuzzy) numbers. ...

full text

Fuzzy c-Means Herding

Herding is the process of bringing individuals (e.g. animals) together into a group. More specifically, we consider self– organized herding as the process of moving a set of individuals to a given number of locations (cluster centers) without any external control. We formally describe the relation between herding and clustering and show that any clustering model can be used to control herding p...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue 4

pages  85- 104

publication date 2020-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023