Recognition of Multiple PQ Issues using Modified EMD and Neural Network Classifier

Authors

  • M. K. Saini DCR University of Science & Technology, Murthal (Sonipat), India.
  • R. K. Beniwal DCR University of Science & Technology, Murthal (Sonipat), India.
Abstract:

This paper presents a new framework based on modified EMD method for detection of single and multiple PQ issues. In modified EMD, DWT precedes traditional EMD process. This scheme makes EMD better by eliminating the mode mixing problem. This is a two step algorithm; in the first step, input PQ signal is decomposed in low and high frequency components using DWT. In the second stage, the low frequency component is further processed with EMD technique to get IMFs. Eight features are extracted from IMFs of low frequency component. Unlike low frequency component, features are directly extracted from the high frequency component. All these features form feature vector which is fed to PNN classifier for classification of PQ issues. For comparative analysis of performance of PNN, results are compared with SVM classifier. Moreover, performance of proposed methodology is also validated with noisy PQ signals. PNN has outperformed SVM for both noiseless and noisy PQ signals.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Face Recognition using Convolutional Neural Network and Simple Logistic Classifier

In this paper, a hybrid system is presented in which a convolutional neural network (CNN) and a Logistic regression classifier (LRC) are combined. A CNN is trained to detect and recognize face images, and a LRC is used to classify the features learned by the convolutional network. Applying feature extraction using CNN to normalized data causes the system to cope with faces subject to pose and l...

full text

Radar Emitter Signal Recognition Based on EMD and Neural Network

Radar emitter signal (RES) recognition is the important content in radar reconnaissance and signal processing. In order to study the problem of RES recognition, and to improve the RES recognition rate of the electronic warfare equipment, the empirical mode decomposition (EMD) theory and wavelet packet (WP) are introduced into RES feature extraction. A new RES recognition method is proposed base...

full text

Neural Network Based Face Recognition Using RBFN Classifier

Face Biometrics is a science of automatically identifying individuals based on their unique facial features. The paper presents neural network classifier(Radial Basis Function Network) to detect frontal views of faces. The curvelet transform, Linear Discriminant Analysis(LDA) are used to extract features from facial images first, and Radial Basis Function Network(RBFN) is used to classify the f...

full text

Persian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network

Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...

full text

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 2

pages  188- 203

publication date 2018-06

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023