Quasi-Primary Decomposition in Modules Over Proufer Domains

Authors

Abstract:

In this paper we investigate decompositions of submodules in modules over a Proufer domain into intersections of quasi-primary and classical quasi-primary submodules. In particular, existence and uniqueness of quasi-primary decompositions in modules over a Proufer domain of finite character are proved. Proufer domain; primary submodule; quasi-primary submodule; classical quasi-primary; decomposition.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

quasi-primary decomposition in modules over proufer domains

in this paper we investigate decompositions of submodules in modules over a proufer domain into intersections of quasi-primary and classical quasi-primary submodules. in particular, existence and uniqueness of quasi-primary decompositions in modules over a proufer domain of finite character are proved. proufer domain; primary submodule; quasi-primary submodule; classical quasi-primary; decomposi...

full text

Primary Decomposition of Modules over Dedekind Domains Using Gröbner Bases

In [6] was proved that if R is a principal ideal domain and N ⊂ M are submodules of R[x1, . . . , xn], then the primary decomposition for N in M can be computed using Gröbner bases. In this paper we extend this result to Dedekind domains. The procedure that computed the primary decomposition is illustrated with an example.

full text

A scheme over quasi-prime spectrum of modules

The notions of quasi-prime submodules and developed  Zariski topology was introduced by the present authors in cite{ah10}. In this paper we use these notions to define a scheme. For an $R$-module $M$, let $X:={Qin qSpec(M) mid (Q:_R M)inSpec(R)}$. It is proved that $(X, mathcal{O}_X)$ is a locally ringed space. We study the morphism of locally ringed spaces induced by $R$-homomorphism $Mrightar...

full text

Projective Modules over Dedekind Domains

In these notes we will first define projective modules and prove some standard properties of those modules. Then we will classify finitely generated projective modules over Dedekind domains Remark 0.1. All rings will be commutative with 1. 1. Projective modules Definition 1.1. Let R be a ring and let M be an R-module. Then M is called projective if for all surjections p : N → N ′ and a map f : ...

full text

Computations in Modules over Commutative Domains

This paper is a review of results on computational methods of linear algebra over commutative domains. Methods for the following problems are examined: solution of systems of linear equations, computation of determinants, computation of adjoint and inverse matrices, computation of the characteristic polynomial of a matrix.

full text

Tilting Modules over Almost Perfect Domains

We provide a complete classification of all tilting modules and tilting classes over almost perfect domains, which generalizes the classifications of tilting modules and tilting classes over Dedekind and 1-Gorenstein domains. Assuming the APD is Noetherian, a complete classification of all cotilting modules is obtained (as duals of the tilting ones).

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 2

pages  149- 160

publication date 2014-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023