PSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent

Authors

  • Abbas Rezaei Department of Electrical Engineering, Kermanshah University of Technology, Kermanshah, Iran
  • Majid Mohadesi Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran
  • Mona Nazari Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran
  • Sohrab Fathi Department of Chemical Engineering, Faculty of Energy, Kermanshah University of Technology, Kermanshah, Iran
Abstract:

In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (SA), temperature (T), and pressure (P) were related to the output parameter which is propylene or propane adsorption. A thorough comparison between the experimental, artificial neural network and particle swarm optimization-adaptive neuro-fuzzy inference system models was carried out to prove its efficiency in accurate prediction and computation time. The obtained results show that both investigated methods have good agreements in comparison with the experimental data, but the proposed artificial neural network structure is more precise than our proposed PSO-ANFIS structure. Mean absolute error (MAE) for ANN and ANFIS models were 0.111 and 0.421, respectively.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

EVELOPMENT OF ANFIS-PSO, SVR-PSO, AND ANN-PSO HYBRID INTELLIGENT MODELS FOR PREDICTING THE COMPRESSIVE STRENGTH OF CONCRETE

Concrete is the second most consumed material after water and the most widely used construction material in the world. The compressive strength of concrete is one of its most important mechanical properties, which highly depends on its mix design. The present study uses the intelligent methods with instance-based learning ability to predict the compressive strength of concrete. To achieve this ...

full text

Surface Roughness Prediction Model Using Ann & Anfis

Now a days the general manufacturing problem can be described as the achievement of a predefined product quality with given equipment, cost and time constraints. There is a rapid development in the quality of advanced aero space materials like aluminum and its alloys with improved properties. The difficulties in machining of these materials economically and effectively are limiting their applic...

full text

Simulation of groundwater quality parameters using ANN and ANN+PSO models (Case study: Ramhormoz Plain)

One of the main aims of water resource planners and managers is to estimate and predict the parameters of groundwater quality so that they can make managerial decisions. In this regard, there have many models developed, proposing better management in order to maintain water quality. Most of these models require input parameters that are either hardly available or time-consuming and expensive to...

full text

Performance evaluation of gang saw using hybrid ANFIS-DE and hybrid ANFIS-PSO algorithms

One of the most significant and effective criteria in the process of cutting dimensional rocks using the gang saw is the maximum energy consumption rate of the machine, and its accurate prediction and estimation can help designers and owners of this industry to achieve an optimal and economic process. In the present research work, it is attempted to study and provide models for predicting the m...

full text

Simulation of groundwater quality parameters using ANN and ANN+PSO models (Case study: Ramhormoz Plain)

One of the main aims of water resource planners and managers is to estimate and predict the parameters of groundwater quality so that they can make managerial decisions. In this regard, there have many models developed, proposing better management in order to maintain water quality. Most of these models require input parameters that are either hardly available or time-consuming and expensive to...

full text

Network Anomaly Detection using PSO-ANN

In this work, the continue from the last research work done [20], thus it is proposed a data mining based anomaly detection system, aiming to detect volume anomalies, using Simple Network Management Protocol (SNMP) monitoring. The method is novel in terms of combining the use of Digital Signature of Network Segment (DSNS) with the evolutionary technique called Particle Swarm Optimization (PSO)[...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 53  issue 2

pages  191- 201

publication date 2019-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023