Provide a Deep Convolutional Neural Network Optimized with Morphological Filters to Map Trees in Urban Environments Using Aerial Imagery

Authors

  • Darvishi, Moslem School of Surveying & Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
  • Shah-Hosseini, Reza School of Surveying & Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran.
Abstract:

Today, we cannot ignore the role of trees in the quality of human life, so that the earth is inconceivable for humans without the presence of trees. In addition to their natural role, urban trees are also very important in terms of visual beauty. Aerial imagery using unmanned platforms with very high spatial resolution is available today. Convolutional neural networks based deep learning methods are very efficient in processing large amounts of data from this type of imaging and facing its special challenges. The current paper proposed an encoder-decoder networks based convolutional neural network architecture, the results of which are based on reference data provided by the International Society of Photogrammetry and Remote Sensing from Potsdam, Germany for urban tree detection, provide 96.10% overall accuracy and F1 score equals 80.72%. However, very little change in accuracy can be attributed to the time of imaging, at which the trees in the study region generally did not have any greenery. Another discussion in this research is to create a differential image of the terrestrial reality map and the output estimation map of the proposed algorithm. According to this differential map, the application of a morphological filter seems to be useful, which in practice has increased the accuracy of the final classification. The final issue is the use of training network parameters by red, green and blue band combination as primary parameters for the network with near, red and green infrared band input, in which case the time to achieve the best network performance is reduced by about 83% and this pre-training of neural network parameters has caused the rapid convergence of the target network.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

DCFNet: Deep Neural Network with Decomposed Convolutional Filters

Filters in a Convolutional Neural Network (CNN) contain model parameters learned from enormous amounts of data. In this paper, we suggest to decompose convolutional filters in CNN as a truncated expansion with pre-fixed bases, namely the Decomposed Convolutional Filters network (DCFNet), where the expansion coefficients remain learned from data. Such a structure not only reduces the number of t...

full text

Integration of Deep Learning Algorithms and Bilateral Filters with the Purpose of Building Extraction from Mono Optical Aerial Imagery

The problem of extracting the building from mono optical aerial imagery with high spatial resolution is always considered as an important challenge to prepare the maps. The goal of the current research is to take advantage of the semantic segmentation of mono optical aerial imagery to extract the building which is realized based on the combination of deep convolutional neural networks (DCNN) an...

full text

EMG-based wrist gesture recognition using a convolutional neural network

Background: Deep learning has revolutionized artificial intelligence and has transformed many fields. It allows processing high-dimensional data (such as signals or images) without the need for feature engineering. The aim of this research is to develop a deep learning-based system to decode motor intent from electromyogram (EMG) signals. Methods: A myoelectric system based on convolutional ne...

full text

Satellite Imagery Feature Detection using Deep Convolutional Neural Network: A Kaggle Competition

This paper describes our approach to the DSTL Satellite Imagery Feature Detection challenge [11] run by Kaggle. The primary goal of this challenge is accurate semantic segmentation of different classes in satellite imagery. Our approach is based on an adaptation of fully convolutional neural network for multispectral data processing. In addition, we defined several modifications to the training...

full text

Steganalysis via a Convolutional Neural Network using Large Convolution Filters

For the past few years, in the race between image steganography and steganalysis, deep learning has emerged as a very promising alternative to steganalyzer approaches based on rich image models combined with ensemble classifiers. A key knowledge of image steganalyzer, which combines relevant image features and innovative classification procedures, can be deduced by a deep learning approach call...

full text

Using convolutional networks and satellite imagery to identify paerns in urban environments at a large scale

Urban planning applications (energy audits, investment, etc.) require an understanding of built infrastructure and its environment, i.e., both low-level, physical features (amount of vegetation, building area and geometry etc.), as well as higher-level concepts such as land use classes (which encode expert understanding of socio-economic end uses). Œis kind of data is expensive and laborintensi...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 2

pages  89- 104

publication date 2022-11

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

No Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023