Proposing a Constrained-GSA for the Vehicle Routing Problem
Authors
Abstract:
In the past decades, vehicle routing problem (VRP) has gained considerable attention for its applications in industry, military, and transportation applications. Vehicle routing problem with simultaneous pickup and delivery is an extension of the VRP. This problem is an NP-hard problem; hence finding the best solution for this problem which is using exact method, take inappropriate time, and these methods are not useful in real-world applications. Using meta-heuristic algorithms for calculating and computing the solutions for NP-hard problems is a common method to contrast this challenge. The objective function defined for this problem, is a constrained objective function. In previous algorithms, the penalty method was used as constraint handling technique to define the objective function. Determining the value of parameters and penalty coefficient is not easy in these methods. Moreover, the optimal number of vehicles was not considered in the previous algorithms. So, the user should guess number of vehicles and compare the result with other values for this variable. In this paper, a novel objective function is defined to solve the vehicle routing problem with simultaneous pickup and delivery. This method can find the vehicle routes such that increases the performance of the vehicles and decreases the processes’ costs of transportation. in addition, the optimal number of vehicle in this problem can be calculated using this objective function. Finding the best solution for this optimization problems is an NP-hard and meta-heuristic methods can be used to estimate good solutions for this problem. Then, a constrained version of gravitational search algorithm is proposed. In this method, a fuzzy logic controller is used to calculate the value of the parameters and control the abilities of the algorithm, automatically. Using this controller can balance the exploration and exploitation abilities in the gravitational search algorithm and improve the performance of the algorithm. This new version of gravitational search algorithm is used to find a good solution for the predefined objective function. The proposed method is evaluated on some standard benchmark test functions and problems. The experimental results show that the proposed method outperforms the state-of-the-art methods, despite the simplicity of implementation.
similar resources
A HYBRID ALGORITHM FOR THE OPEN VEHICLE ROUTING PROBLEM
The open vehicle routing problem (OVRP) is a variance of the vehicle routing problem (VRP) that has a unique character which is its open path form. This means that the vehicles are not required to return to the depot after completing service. Because this problem belongs to the NP-hard problems, many metaheuristic approaches like the ant colony optimization (ACO) have been used to solve OVRP in...
full textA novel heuristic algorithm for capacitated vehicle routing problem
The vehicle routing problem with the capacity constraints was considered in this paper. It is quite difficult to achieve an optimal solution with traditional optimization methods by reason of the high computational complexity for large-scale problems. Consequently, new heuristic or metaheuristic approaches have been developed to solve this problem. In this paper, we constructed a new heuristic ...
full textExact Algorithms for the Chance-Constrained Vehicle Routing Problem
We study the chance-constrained vehicle routing problem (CCVRP), a version of the vehicle routing problem (VRP) with stochastic demands, where a limit is imposed on the probability that each vehicle’s capacity is exceeded. A distinguishing feature of our proposed methodologies is that they allow correlation between random demands, whereas nearly all existing exact methods for the VRP with stoch...
full textA New Mathematical Model for the Green Vehicle Routing Problem by Considering a Bi-Fuel Mixed Vehicle Fleet
This paper formulates a mathematical model for the Green Vehicle Routing Problem (GVRP), incorporating bi-fuel (natural gas and gasoline) pickup trucks in a mixed vehicle fleet. The objective is to minimize overall costs relating to service (earliness and tardiness), transportation (fixed, variable and fuel), and carbon emissions. To reflect a real-world situation, the study considers: (1) a co...
full textAn Imperialist Competitive Algorithm and a Mixed Integer Programming Formulation for the Capacitated Vehicle Routing Problem
The Vehicle Routing Problem (VRP), a famous problem of operation research, holds a central place in combinatorial optimization problems. In this problem, a fleet vehicles with Q capacity start to move from depot and return after servicing to customers in which visit only ones each customer and load more than its capacity not at all. The objective is to minimize the number of used vehicles and t...
full textintroducing a novel mathematical model for school vehicle routing problem and proposing a new algorithm to solve it
this research presents and solves a new mathematical model for school bus routing problem (sbrp). sbrp is a specific case of vehicle routing problem (vrp). despite prevalent models, this model includes location and routing simultaneously. besides, the vehicles are non-homogenous. in addition, instead of locating schools which are the depots, we consider locating bus stops that are mentioned &ap...
full textMy Resources
Journal title
volume 18 issue 4
pages 23- 36
publication date 2022-03
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023