Properties of matrices with numerical ranges in a sector

Authors

  • D. Zhang Department of Mathematics‎, ‎Shanghai University‎, ‎Shanghai 200444‎, ‎China.
  • L. Hou Department of Mathematics‎, ‎Shanghai University‎, ‎Shanghai 200444‎, ‎China.
  • L. Ma Department of Mathematics‎, ‎Shanghai University‎, ‎Shanghai 200444‎, ‎China.
Abstract:

Let $(A)$ be a complex $(ntimes n)$ matrix and assume that the numerical range of $(A)$ lies in the set of a sector of half angle $(alpha)$ denoted by $(S_{alpha})$. We prove the numerical ranges of the conjugate, inverse and Schur complement of any order of $(A)$ are in the same $(S_{alpha})$.The eigenvalues of some kinds of matrix product and numerical ranges of hadmard product, star-congruent matrix and unitary matrix of polar decompostion are also included in the same sector. Furthermore, we extend some inequalities about eigenvalues and singular values and the linear fractional maps to this class of matrices.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Determinantal and Eigenvalue Inequalities for Matrices with Numerical Ranges in a Sector

Let A = ( A11 A12 A21 A22 ) ∈ Mn, where A11 ∈ Mm with m ≤ n/2, be such that the numerical range of A lies in the set {eiφz ∈ C : |=z| ≤ (<z) tanα}, for some φ ∈ [0, 2π) and α ∈ [0, π/2). We obtain the optimal containment region for the generalized eigenvalue λ satisfying λ ( A11 0 0 A22 ) x = ( 0 A12 A21 0 ) x for some nonzero x ∈ C, and the optimal eigenvalue containment region of the matrix I...

full text

Higher Rank Numerical Ranges of Normal Matrices

The higher rank numerical range is closely connected to the construction of quantum error correction code for a noisy quantum channel. It is known that if a normal matrix A ∈ Mn has eigenvalues a1, . . . , an, then its higher rank numerical range Λk(A) is the intersection of convex polygons with vertices aj1 , . . . , ajn−k+1 , where 1 ≤ j1 < · · · < jn−k+1 ≤ n. In this paper, it is shown that ...

full text

Hermitian octonion matrices and numerical ranges

Notions of numerical ranges and joint numerical ranges of octonion matrices are introduced. Various properties of hermitian octonion matrices related to eigenvalues and convex cones, such as the convex cone of positive semidefinite matrices, are described. As an application, convexity of joint numerical ranges of 2×2 hermitian matrices is characterized. Another application involves existence of...

full text

Ela Hermitian Octonion Matrices and Numerical Ranges

Notions of numerical ranges and joint numerical ranges of octonion matrices are introduced. Various properties of hermitian octonion matrices related to eigenvalues and convex cones, such as the convex cone of positive semidefinite matrices, are described. As an application, convexity of joint numerical ranges of 2×2 hermitian matrices is characterized. Another application involves existence of...

full text

Some results on higher numerical ranges and radii of quaternion matrices

‎Let $n$ and $k$ be two positive integers‎, ‎$kleq n$ and $A$ be an $n$-square quaternion matrix‎. ‎In this paper‎, ‎some results on the $k-$numerical range of $A$ are investigated‎. ‎Moreover‎, ‎the notions of $k$-numerical radius‎, ‎right $k$-spectral radius and $k$-norm of $A$ are introduced‎, ‎and some of their algebraic properties are studied‎.

full text

Higher–rank Numerical Ranges of Unitary and Normal Matrices

We verify a conjecture on the structure of higher-rank numerical ranges for a wide class of unitary and normal matrices. Using analytic and geometric techniques, we show precisely how the higher-rank numerical ranges for a generic unitary matrix are given by complex polygons determined by the spectral structure of the matrix. We discuss applications of the results to quantum error correction, s...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 43  issue 6

pages  1699- 1707

publication date 2017-11-30

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023