Probability of Mutually Commuting N-Tuples in Some Classes of Compact Groups
Authors
Abstract:
This article doesn't have abstract
similar resources
Probability of having $n^{th}$-roots and n-centrality of two classes of groups
In this paper, we consider the finitely 2-generated groups $K(s,l)$ and $G_m$ as follows:$$K(s,l)=langle a,b|ab^s=b^la, ba^s=a^lbrangle,\G_m=langle a,b|a^m=b^m=1, {[a,b]}^a=[a,b], {[a,b]}^b=[a,b]rangle$$ and find the explicit formulas for the probability of having nth-roots for them. Also, we investigate integers n for which, these groups are n-central.
full textcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولsome special classes of n-abelian groups
given an integer $n$, we denote by $mathfrak b_n$ and $mathfrak c_n$ the classes of all groups $g$ for which the map $phi_{n}:gmapsto g^n$ is a monomorphism and an epimorphism of $g$, respectively. in this paper we give a characterization for groups in $mathfrak b_n$ and for groups in $mathfrak c_n$. we also obtain an arithmetic description of the set of all integers $n$ such that a gr...
full textprobability of having n^th-roots and n-centrality of two classes of groups
in this paper, we consider the finitely 2-generated groups k(s,l) and g_m as follows:k(s,l) = ;g_m = and find the explicit formulas for the probability of having nth-roots for them. also weinvestigate integers n for which, these groups are n-central.
full textCohomology of the Space of Commuting N-tuples in a Compact Lie Group
Consider the space Hom(Z n , G) of pairwise commuting n-tuples of elements in a compact Lie group G. This forms a real algebraic variety, which is generally singular. In this paper, we construct a desingulariza-tion of the generic component of Hom(Z n , G), which allows us to derive formulas for its singular and equivariant cohomology in terms of the Lie algebra of a maximal torus in G and the ...
full textMy Resources
Journal title
volume 34 issue No. 2
pages 27- 37
publication date 2011-01-31
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023