PRESSURELESS SINTERING OF B4C-NANOTiB2 NANOCOMPOSITE BY ADDITION OF Fe AND Ni AS SINTERING AIDS

Authors

  • H. Abdizadeh School of Metallurgy and Materials Engineering, University of Tehran, Tehran, Iran.
  • H. R. Baharvandi Malek-Ashtar University of Technology, Tehran, Iran.
  • J. Rezapour Malek-Ashtar University of Technology, Tehran, Iran.
Abstract:

B4C and its composites with TiB2 as second phase continues to be extensively used as the preferred ceramic material in military applications as armor systems for absorbing and dissipating kinetic energy from high velocity projectiles. It also exhibits a high melting point (2427 °C), and high neutron absorption cross section. Pressureless sintering of the B 4C-nanoTiB2 nanocomposite using small amount of Fe and Ni (≤3 Wt%) as sintering aids was investigated in order to clarify the role of Fe and Ni additions on the mechanical and microstructural properties of B4C-nanoTiB2 nanocomposites. Different amount of Fe and Ni, mainly 1 to 3 Wt% were added to the base material. Pressureless sintering was conducted at 2175, 2225 and 2300 °C. It was found that Addition of 3 Wt% Fe and 3 wt% Ni and sintering at 2300 °C resulted in improving the density of the samples to about 99% of theoretical density. The nanocomposite samples exhibited high density, hardness, and microstructural uniformity.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Synthesis and liquid phase sintering of TiN/TiB2/Fe–Cr–Ni nanocomposite powder

Nanostructured TiN/TiB2/Fe–Cr–Ni composite powder has been prepared via high energy ball milling. Ti and BN powders are reacted to form uniform mixture of TiN and TiB2 within 2 h of milling by a mechanically activated self-sustaining reaction (MSR). The crystallite sizes of TiN nd TiB2 are about 7 and 16 nm, respectively, after 32 h of milling. Through liquid phase sintering and optimizing the ...

full text

Densification and Mechanical Properties of B4C with Al2O3 as a Sintering Aid

The densification behavior and mechanical properties of B4C hot-pressed at 2000°C for 1 h with additions of Al2O3 up to 10 vol% were investigated. Sinterability was greatly improved by the addition of a small amount of Al2O3. The improvement was attributed to the enhanced mobility of elements through the Al2O3 near the melting temperature or a reaction product formed at the grain boundaries. As...

full text

Effect of Titanium Addition on the Thermal Properties of Diamond/Cu-Ti Composites Fabricated by Pressureless Liquid-Phase Sintering Technique

In this study, minor-addition elements such as Si, Co, Cr, W, Mo, and Ti were added to matrix to improve the wettability between the diamonds and Cu matrix. The pressureless liquid-phase sintering technique adopted in this study provides a low-cost method for producing diamond/Cu composites with high potential for industrial mass production. Thermal properties of the diamond/Cu-Ti composites fa...

full text

8YSZ sintering by flash sintering method and evaluation of process parameters

Flash sintering as a new sintering method for sintering of ceramic materials has been studied and effect of various parameter such as flash current density, time of flash and contact paste on properties of flash sintered 8YSZ samples has been investigated. Results showed it is possible to achieve high density in shorter time and lower temperature than conventional sintering methods. Samples cou...

full text

Sintering and Characterizations of WC-20wt.% (Fe,Co) Nano-Structured Powders Developed by Ball-Milling

The aim of the present work is to study the effects of the nanostructured WC-20 wt. % (Fe,Co) with different ratios of iron to cobalt on the microstructure and hardness of sintered samples. Furthermore, a sample with a cobalt binder under the same condition was produced for the comparison purposes. The nanocomposite development, after different milling times, has been monitored by means of X-ra...

full text

Effect of SiC nanoparticles addition on mechanical properties and wear resistance of cemented carbides fabricated by spark plasma sintering

WC-10Co cemented carbides containing 1 to 4 wt% SiC nanoparticles were prepared by spark plasma sintering. The effects of SiC content on microstructure, mechanical properties and wear resistance of the sintered materials were studied. Microstructural studies showed that SiC addition resulted in WC grain coarsening. In addition, the hardness decreased with increasing SiC content. However, the fr...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 11  issue 4

pages  33- 39

publication date 2014-12

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023