Preparation and in-vitro Antibacterial Evaluation of Electroless Silver Coated Polymers
Authors
Abstract:
Long-term use of indwelling medical catheters has often been hindered by catheter-associated nosocomial infections. In this study the effectiveness of silver coating of polystyrene and polyethylene polymers was investigated. Polymer pieces of 2 cm2 each were coated with a thin layer of silver using electroless plating technique. Silver-coated polymers were challenged with cultures of four different microorganisms known for their involvement in nosocomial infections in both solid and broth media. The tested bacteria included Staphylococcus aureus, Staphylococcus epidermidis, Escherichia coli and Pseudomonas aeruginosa. Silver release from the coated polymers was 2-5 ?g/cm2 which was confirmed by chemical and biological methods. The silver coating thickness ranged between 20-450 nm. P. aeruginosa and S. aureus were the most adherent bacteria to polystyrene sheets while E. coli showed minimum adherence effect. The survival rate of different bacteria after 80 min in a time course experiment tended to dominate E. coli as the most sensitive bacteria to the effect of silver with zero survival rate while around 4% of P. aeruginosa were detected after same period. Silver coating of indwelling polymers by electroless technique seems promising in combating nosocomial infections due to long-term catheterization
similar resources
Preparation and in-vitro Antibacterial Evaluation of Electroless Silver Coated Polymers
Long-term use of indwelling medical catheters has often been hindered by catheter-associated nosocomial infections. In this study the effectiveness of silver coating of polystyrene and polyethylene polymers was investigated. Polymer pieces of 2 cm(2) each were coated with a thin layer of silver using electroless plating technique. Silver-coated polymers were challenged with cultures of four dif...
full textpreparation and in-vitro antibacterial evaluation of electroless silver coated polymers
long-term use of indwelling medical catheters has often been hindered by catheter-associated nosocomial infections. in this study the effectiveness of silver coating of polystyrene and polyethylene polymers was investigated. polymer pieces of 2 cm2 each were coated with a thin layer of silver using electroless plating technique. silver-coated polymers were challenged with cultures of four diffe...
full textPreparation and Antibacterial Activity of Silver Nanoparticles
Uniform silver nanoparticles have been prepared through the chemical reduction of silver ions by ethanol in presence of sodium linoleate. TEM micrograph shows a uniform distribution of the particles with an average size of 12 nm. Further, the antimicrobial activity of silver nanoparticles shows that these nanoparticles can be used as effective growth inhibitors against Staphylococcus Basillus, ...
full textAntibacterial activity of silver camphorimine coordination polymers.
Five new silver camphorimine complexes of general formula [Ag(NO3)(Y)L] were synthesized and fully characterized using spectroscopic and analytical techniques. The structure of [Ag(NO3)(OC10H14NC6H4NC10H14O)] () was analyzed using single crystal X-ray diffraction, showing that it arranges as a coordination polymer formed by sequential Ag(NO3) units bridged by the bi-camphor ligand (). The antim...
full textPreparation and In Vitro Evaluation of Sustained-Release Matrix Tablets of Flutamide Using Synthetic and Naturally Occurring Polymers
Frequent dosing of the potent anti-androgen, flutamide, is necessary to reach a therapeutic level for the treatment of prostatic carcinoma. Sustained delivery of the drug could reduce the adverse effects such as gastrointestinal disorders and improve patient compliance. In the present study sustained-release matrix tablets of flutamide were prepared by direct compression method using different ...
full textMy Resources
Journal title
volume Volume 9 issue Number 3
pages 259- 264
publication date 2010-11-20
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023