Preparation and Characterization of ZnO Thin Layers with Various Percentages of Gallium Impurities

Authors

  • Mehdi Ahmadi Department of Physics, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
  • Mohammad Sabet Department of Chemistry, Faculty of Science, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
Abstract:

In this study, thin films of pure ZnO and  doped ZnO with different percentages of gallium (0.5, 1, 2 and 4vt. %) on the glass substrates were deposited by using sol-gel method via spin coating technique at 2500 rpm, and all layers were annealed at 200°C for 1h and then Were examined their electrical, optical and structural properties. Concentration of all solution was 0.1M. The results show that the optimized layer is 0.5% GZO. By examining the transmittance spectrums we find that by doping the transparency of samples were improved and all samples in the visible areas 400-800nm are transparent. The electrical conductivity of all samples has been measured by four-point probe technique. The electrical conductivitys of pure ZnO sample and 0.5% GZO are 910-5 S/cm and 110-4 S/cm respectively. It can be a good choice for optoelectronic applications. Also X-ray diffraction results showed that diffraction peaks of 0.5% GZO sample have a small changes towards lower angles compared to the diffraction peaks of ZnO. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Al Doped ZnO Thin Films; Preparation and Characterization

ZnO is a promising material suitable for variety of novel electronic applications including sensors, transistors, and solar cells. Intrinsic ZnO film has inferiority in terms of electronic properties, which has prompted researches and investigations on doped ZnO films in order to improve its electronic properties. In this work, aluminum (Al) doped ZnO (AZO) with various concentrations and undop...

full text

Polycrystalline indium-doped ZnO thin films: preparation and characterization

Zinc oxide (ZnO) and indium-doped zinc oxide (IZO) thin films have been deposited onto glass substrates by the spray pyrolysis method. The variations of the structural, electrical and optical properties with the indium incorporation were investigated. The crystal structure and orientation of the ZnO and IZO thin films were investigated by XRD patterns. All the deposited films are polycrystallin...

full text

synthesis and characterization of some macrocyclic schiff bases

ماکروسیکلهای شیف باز از اهمیت زیادی در شیمی آلی و دارویی برخوردار می باشند. این ماکروسیکلها با دارابودن گروه های مناسب در مکانهای مناسب می توانند فلزاتی مثل مس، نیکل و ... را در حفره های خود به دام انداخته، کمپلکسهای پایدار تولید نمایند. در این پایان نامه ابتدا یک دی آلدئید آروماتیک از گلیسیرین تهیه می شود و در مرحله بعدی واکنش با دی آمینهای آروماتیک و یا آلیفاتیک در رقتهای بسیار زیاد منجر به ت...

15 صفحه اول

Preparation and proposed mechanism of ZnO Nanostructure Thin Film on Glass with Highest c-axis Orientation

In this paper, ZnO thin film is deposited on slide glass substrate using the sol-gel process. Presenting well-defined orientation of ZnO thin films Nanostructure were obtained by dip coating of zinc acetate dihydrate, monoethanolamine (MEA), de-ionized water and isopropanol alcohol. The annealed ZnO thin films were transparent ca 85-90% in visible range with an absorption edges at about 375 nm....

full text

Preparation, characterization and determination of photocatalytic activity of MCM-41/ZnO and MCM-48/ZnO nanocomposites

The direct and indirect methods in solvent media and grinding method in a solvent-free media were used to prepare the MCM-41/ZnO and MCM-48/ZnO photocatalysts. The X-ray diffraction (XRD) patterns showed that zinc oxide nanoparticles were put into MCM-41 and MCM-48 substrates and there were ZnO crystallites as secondary phase in the extra framework of mesoporous materials. The decrease of surfa...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue 3

pages  194- 199

publication date 2017-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023