Preparation and characterization of PEG/Dextran coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical applications
Authors: not saved
Abstract:
Recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. Here we appliedcathodic electrochemical deposition (CED) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (SPIONs). In first step, bare Fe3O4 nanoparticles were prepared by CED method using a molar ratio of Fe3+:Fe2+ of 2:1. In the next step, the surface of nanoparticles was double coated with dextran (DEX) and polyethylene glycol (PEG) during the CED procedure, and PEG/DEX coated SPIONs were obtained. The prepared NPs were characterized using powderX-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), dynamic light scattering (DLS), vibrating sample magnetometer (VSM) and Field-emission scanning and transmission electron microscopy (FE-SEM and TEM). The XRD results confirmed that both deposited NPs have pure magnetite. FTIR results analysis indicated the existence of two coats (i.e. PEG and DEX) on the surface of depositedparticles. TG analysis exhibited the value of coat on the NPs surface is about 36%. The superparamagnetic properties of both prepared NPs were verified by VSM data, where the PEG/DEX coated NPs showed high magnetization value (Ms=30 emu/g), and negligible coercivity (Ce=0.95 Oe) and remanence (Mr=0.44 emu/g) values. The obtained results confirmed that the prepared Fe3O4 nanoparticles have suitable physico-chemical and magnetic properties for biomedical applications. In final, CED method can be proposed for facile preparation and in situ surface coating of superparamagnetic nanoparticles.
similar resources
preparation and characterization of peg/dextran coated superparamagnetic iron oxide (fe3o4) nanoparticles for biomedical applications
recent progress in nanotechnology and electrochemical methods can be applied to fine control of the size, crystal structure, and surface properties of iron oxide nanoparticles. here we appliedcathodic electrochemical deposition (ced) as an efficient and effective tactic for synthesisand double coating of surface of superparamagnetic iron oxide nanoparticles (spions). in first step, bare fe3o4 n...
full textPreparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
full textPreparation of polymer coated superparamagnetic Iron Oxide (Fe3O4) nanoparticles for biomedical application
Biomedical applications of superparamagnetic iron oxide nanoparticles (SPIONs) requiring precise control over their physical and magnetic properties, and proper surface treatment. Here we report a practical and effective electrochemical strategy for preparation of the polymer coated SPIONs. In this strategy, in situ polymer coating on the surface of SPIONs was achieved through electrodeposition...
full textpreparation of polymer coated superparamagnetic iron oxide (fe3o4) nanoparticles for biomedical application
biomedical applications of superparamagnetic iron oxide nanoparticles (spions) requiring precise control over their physical and magnetic properties, and proper surface treatment. here we report a practical and effective electrochemical strategy for preparation of the polymer coated spions. in this strategy, in situ polymer coating on the surface of spions was achieved through electrodeposition...
full textSuperparamagnetic Iron oxide-Gold Core-Shell Nanoparticles for Biomedical Applications
Iron oxide nanoparticles are used for contrast enhancement in magnetic resonance imaging (MRI). We have prepared gold-coated iron oxide nanoparticles that show no change in their superparamagnetic behavior as a consequence of coating. Their potential use as MRI contrast agents was investigated by monitoring their T2 relaxation time with concentration. Cytotoxicity of these nanoparticles was als...
full textMy Resources
Journal title
volume 5 issue 2
pages 95- 104
publication date 2016-07-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023