Prediction of Red Mud Bound-Soda Losses in Bayer Process Using Neural Networks
Authors
Abstract:
In the Bayer process, the reaction of silica in bauxite with caustic soda causes the loss of great amount of NaOH. In this research, the bound-soda losses in Bayer process solid residue (red mud) are predicted using intelligent techniques. This method, based on the application of regression and artificial neural networks (AAN), has been used to predict red mud bound-soda losses in Iran Alumina Company. Multilayer perceptron (MLP), radial basis function (RBF) networks and multiple linear regressions (MLR) were applied. The results of three methodologies were compared for their predictive capabilities in terms of the correlation coefficient (R), mean square error (MSE) and the absolute average deviation (AAD) based on the experimental data set. The optimum MLP network was obtained with structure of two hidden layer including 13 and 15 neurons in each layer respectively. The results showed that the RBF model with 0.117, 5.909 and 0.82 in MSE, AAD and R, respectively, is extremely accurate in prediction as compared with MLP and MLR.
similar resources
Comparing the capability of various models for predicting of the Bayer process parameters
In the present study, prediction of Alumina recovery efficiency (A.R.E), the amount of produced red mud (A.P.R), red mud settling rate (R.S.R) and bound-soda losses (B.S.L) in Bayer process red mud has been carried out for the first time in the field. These predictions are based on Lime to bauxite ratio and chemical analyses of bauxite and lime as Bayer process feed materials. Radial basis func...
full textrodbar dam slope stability analysis using neural networks
در این تحقیق شبکه عصبی مصنوعی برای پیش بینی مقادیر ضریب اطمینان و فاکتور ایمنی بحرانی سدهای خاکی ناهمگن ضمن در نظر گرفتن تاثیر نیروی اینرسی زلزله ارائه شده است. ورودی های مدل شامل ارتفاع سد و زاویه شیب بالا دست، ضریب زلزله، ارتفاع آب، پارامترهای مقاومتی هسته و پوسته و خروجی های آن شامل ضریب اطمینان می شود. مهمترین پارامتر مورد نظر در تحلیل پایداری شیب، بدست آوردن فاکتور ایمنی است. در این تحقیق ...
Physical and Chemical Properties of Sintering Red Mud and Bayer Red Mud and the Implications for Beneficial Utilization
Performances of two common types of red mud, Bayer red mud and Sintering red mud, were investigated in this research. Their compositions, mechanical properties and microstructure characterization were measured through XRD, TG and SEM analysis. Their shear strength, particle size, density and hydraulic characteristics also had been performed. Huge differences between the basic mineral types of t...
full textPrediction of Electrochemical Machining Process Parameters using Artificial Neural Networks
Electrochemical machining (ECM) is a non-traditional machining process used mainly to cut hard or difficult to cut metals, where the application of a more traditional process is not convenient. It offers several special advantages including higher machining rate, better precision and control, and a wider range of materials that can be machined. A suitable selection of machining parameters for t...
full textPrediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks
This research intends to develop a method based on the Artificial Neural Network (ANN) to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation o...
full textMy Resources
Journal title
volume 13 issue 2
pages 46- 56
publication date 2016-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023