Potential Use of Amniotic Membrane Derived Scaffold for Cerebrospinal Fluid Applications

Authors

  • Fereshteh Dorazehi Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
  • Hanieh Jalali Department of Animal Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
  • Mohammad Nabiuni Department of Cell and Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran.
Abstract:

Scaffolds derived from decellularized tissues provide a natural microenvironment for cell culture. Embryonic cerebrospinal fluid (e-CSF) contains factors which play vital roles in development of the nervous system. This research was aimed to survey the effect of Wistar rat e-CSF on neural differentiation of bone marrow derived mesenchymal stem cells (BM-MSCs) cultured on the human amniotic membrane (AM). BM-MSCs were collected from femurs and tibias, and were cultured in Dulbecco's Modified Eagle's Medium. The placenta was harvested from healthy women during cesarean section and AM was acellularized using EDTA and physical scrubbing. e-CSF was harvested from rat fetuses at E17. Adequate numbers of BM-MSCs were cultured on acellularized membrane, and were treated with E17 CSF for 7 days. MTT (3-(4, 5-dimethylthiazol-2-yl)-2.5-diphenyltetrazolium bromide) assay confirmed the survival and proliferation of BM-MSCs cultured on AM derived scaffold. Hematoxylin/eosin staining and scanning electron microscopy showed the morphological and the structural changes of BM-MSCs throughout the culture and treatment with e-CSF. The results of immunocytochemistry showed that microtubule associated protein 2 and beta-III tubulin were expressed in BM-MSCs cultured on acellular amnion scaffold and treated with e-CSF. Our results showed for the first time that the combination of acellular AM as a natural scaffold and e-CSF as a source of neurological factors could effectively improve the BM-MSCs cultivation and differentiation.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Human Amniotic Fluid-Derived and Amniotic Membrane-Derived Stem Cells

© Shanghai Jiao Tong University Press, Shanghai and Springer Science+Business Media Dordrecht 2015 R.C. Zhao (ed.), Stem Cells: Basics and Clinical Translation, Translational Medicine Research 1, DOI 10.1007/978-94-017-7273-0_2 Abstract Application of amnion membrane with multiple bioactive biomaterial has over 100 years of history. Amnion membraneand amniotic fluid-derived stem cells mainly in...

full text

The potential of mesenchymal stem cells derived from amniotic membrane and amniotic fluid for neuronal regenerative therapy

The mesenchymal stem cells (MSCs), which are derived from the mesoderm, are considered as a readily available source for tissue engineering. They have multipotent differentiation capacity and can be differentiated into various cell types. Many studies have demonstrated that the MSCs identified from amniotic membrane (AM-MSCs) and amniotic fluid (AF-MSCs) are shows advantages for many reasons, i...

full text

Amniotic fluid-derived stem cells for cardiovascular tissue engineering applications.

Recent research has demonstrated that a population of stem cells can be isolated from amniotic fluid removed by amniocentesis that are broadly multipotent and nontumorogenic. These amniotic fluid-derived stem cells (AFSC) could potentially provide an autologous cell source for treatment of congenital defects identified during gestation, particularly cardiovascular defects. In this review, the v...

full text

The effect of cerebrospinal fluid-derived exosomes on neural differentiation of adipose mesenchymal stem cells in alginate hydrogel scaffold

Nowadays, researchers have made extensive efforts to find new treatments for nerve damage. Meanwhile, the role of exosomes in cell-cell communication is considered to be a new mechanism. Exosomes can act as suitable differentiating agents. The aim of this study was to investigate the differentiating effect of cerebrospinal fluid-derived exosomes on adipose mesenchymal stem cells in alginate hyd...

full text

Human Amniotic Fluid Stem Cells: General Characteristics and Potential Therapeutic Applications

Introduction: Amniotic fluid contains a mixture of different cell types sloughed from the fetal skin, respiratory, alimentary and urogenital tracts, as well as the amnion membrane. As amniotic fluid develops prior to the process of gastrulation, many cells found in its heterogeneous population do not undergo lineage specialization. Therefore, amniotic fluid-derived mesenchymal stem cells (AF-MS...

full text

The potential use of stem cells derived from human amniotic fluid in renal diseases

Amniotic fluid (AF) contains a variety of cell types derived from fetal tissues that can easily grow in culture. These cells can be obtained during amniocentesis for prenatal screening of fetal genetic diseases, usually performed during the second trimester of pregnancy. Of particular interest, some expanded sub-populations derived from AF cells are capable of extensive self-renewal and maintai...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 7  issue None

pages  91- 101

publication date 2018-05

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023