Post-buckling response of thin composite plates under end-shortening strain using Chebyshev techniques
Authors
Abstract:
In this paper, a method based on Chebyshev polynomials is developed for examination of geometrically nonlinear behaviour of thin rectangular composite laminated plates under end-shortening strain. Different boundary conditions and lay-up configurations are investigated and classical laminated plate theory is used for developing the equilibrium equations. The equilibrium equations are solved directly by substituting the displacement fields with equivalent finite double Chebyshev polynomials. Using this method allows one to analyze the composite laminated plates with combination of different boundary conditions on all edges. The final nonlinear system of equations is obtained by discretizing both equilibrium equations and boundary conditions with finite Chebyshev polynomials. Nonlinear terms caused by the product of variables are linearized by using quadratic extrapolation technique to solve the system of equations. Since number of equations is always more than the number of unknown parameters, the least squares technique is used to solve the system of equations. Some results for angle-ply and cross-ply composite plates with different boundary conditions are computed and compared with those available in the literature, wherever possible.
similar resources
buckling of viscoelastic composite plates using the finite strip method
در سال های اخیر، تقاضای استفاده از تئوری خطی ویسکوالاستیسیته بیشتر شده است. با افزایش استفاده از کامپوزیت های پیشرفته در صنایع هوایی و همچنین استفاده روزافزون از مواد پلیمری، اهمیت روش های دقیق طراحی و تحلیل چنین ساختارهایی بیشتر شده است. این مواد جدید از خودشان رفتارهای مکانیکی ارائه می دهند که با تئوری های الاستیسیته و ویسکوزیته، نمی توان آن ها را توصیف کرد. این مواد، خواص ویسکوالاستیک دارند....
Using FEM for Prediction of Thermal Post-Buckling Behavior of Thin Plates During Welding Process
Arc welding is an important joining process widely used in many industrial applications including production of automobile, ships structures and metal tanks. In welding process, the moving electrode causes highly non-uniform temperature distribution that leads to residual stresses and different deviations, especially buckling distortions in thin plates. In order to control the deviations and in...
full textBuckling Studies on Laminated Composite Skew Plates
This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...
full textBuckling Studies on Laminated Composite Skew Plates
This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...
full textOptimum Design of Composite Plates under Thermal Buckling Loads using Imperialist Competitive Algorithm
Thermal buckling loads of laminated composite plates are maximized for a given total thickness. Fiber directions and relative thickness of layers are considered as design variables. Analysis of buckling temperature is carried out by using the finite element method, while the imperialist competitive algorithm (ICA) is employed to optimize as many as seven variables for the different layered plat...
full textBuckling Studies on Laminated Composite Skew Plates
This paper presents buckling studies made on skew plates using finite element. The effects of the skew angle, aspect ratio, length-to-thickness-ratio, fibre orientation angle, and numbers of layers in the laminate and laminate sequence on the critical buckling load factor (Kcr) of antisymmetric composite laminates have also been presented. The critical buckling load factor (Kcr) is found to inc...
full textMy Resources
Journal title
volume 12 issue 1
pages 15- 26
publication date 2018-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023