Positive Cone in $p$-Operator Projective Tensor Product of Fig`a-Talamanca-Herz Algebras
author
Abstract:
In this paper we define an order structure on the $p$-operator projective tensor product of Herz algebras and we show that the canonical isometric isomorphism between $A_p(Gtimes H)$ and $A_p(G)widehat{otimes}^p A_p(H)$ is an order isomorphism for amenable groups $G$ and $H$.
similar resources
positive cone in $p$-operator projective tensor product of fig`a-talamanca-herz algebras
in this paper we define an order structure on the $p$-operator projective tensor product of herz algebras and we show that the canonical isometric isomorphism between $a_p(gtimes h)$ and $a_p(g)widehat{otimes}^p a_p(h)$ is an order isomorphism for amenable groups $g$ and $h$.
full textOperator Figà-Talamanca–Herz algebras
Let G be a locally compact group. We use the canonical operator space structure on the spaces L(G) for p ∈ [1,∞] introduced by G. Pisier to define operator space analoguesOAp(G) of the classical Figà-Talamanca–Herz algebrasAp(G). If p ∈ (1,∞) is arbitrary, then Ap(G) ⊂ OAp(G) such that the inclusion is a contraction; if p = 2, then OA2(G) ∼= A(G) as Banach spaces spaces, but not necessarily as ...
full textp-Operator Spaces and Figà-Talamanca-Herz Algebras
We study a generalisation of operator spaces modelled on Lp spaces, instead of Hilbert spaces, using the notion of p-complete boundedness, as studied by Pisier and Le Merdy. We show that the Figà-Talamanca-Herz Algebras Ap(G) becomes quantised Banach algebras in this framework, and that the cohomological notion of amenability of these algebras corresponds to amenability of the locally compact g...
full textOperator space structure and amenability for Figà-Talamanca–Herz algebras
Column and row operator spaces — which we denote by COL and ROW, respectively — over arbitrary Banach spaces were introduced by the first-named author; for Hilbert spaces, these definitions coincide with the usual ones. Given a locally compact group G and p, p ∈ (1,∞) with 1 p + 1 p = 1, we use the operator space structure on CB(COL(L ′ (G))) to equip the Figà-Talamanca–Herz algebra Ap(G) with ...
full textTensor Product of Vertex Operator Algebras
Let V =V1 ⊗ V2 be a tensor product of VOAs. Using Zhu theory we discuss the theory of representations of V (associative algebra, modules and ’fusion rules’). We prove that this theory is more or less the same as representation theory of tensor product of the associative algebras.
full textArens-irregularity of tensor product of Banach algebras
We introduce Banach algebras arising from tensor norms. By these Banach algebras we make Arensregular Banach algebras such that tensor product becomes irregular, where is tensor norm. Weillustrate injective tensor product, does not preserve bounded approximate identity and it is notalgebra norm.
full textMy Resources
Journal title
volume 4 issue 1
pages 51- 63
publication date 2016-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023