Platelet-based MPLE algorithm for denoising of SPECT images: phantom and patient study
Authors
Abstract:
Introduction: In this study the evaluation of a Platelet-based Maximum Penalized Likelihood Estimation (MPLE) for denoising SPECT images was performed and compared with other denoising methods such as Wavelets or Butterworth filtration. Platelet-based MPLE factorization as a multiscale decomposition approach has been already proposed for better edges and surfaces representation due to Poisson noise and inherent smoothness of this kind of images. Methods: We applied this approach on both simulated and real SPECT images. Monte Carlo simulations were generated with the SIMSET package to model the physical processes and instrumentation used in emission imaging. Cardiac, brain and NEMA phantom SPECT images were obtained using a single-head, Argus model SPECT system. The performance of this method has been evaluated both qualitatively and quantitatively with power spectrum, SNR and noise level measurements on simulated and real SPECT images. Results: For NEMA phantom images, the measured noise levels before (Mb) and after (Ma) denoising with Platelet-based MPLE approach were Mb=2.1732, Ma=0.1399. In patient study for 32 cardiac SPECT images, the difference between noise level and SNR before and after the approach were (Mb=3.7607, SNRb=9.7762, Ma=0.7374, SNRa=41.0848) respectively. Thus the Coefficient of variance (C.V) of SNR values for denoised images with this algorithm as compared with Butterworth filter, (145/33%) was found. For 32 brain SPECT images the Coefficient Variance of SNR values, (196/17%) was obtained. Conclusion: Our results shows that, Platelet-based MPLE is a useful method for denoising SPECT images considering better homogenous image, improvements in SNR, better radioactive uptake in target organ and reduction of interfering activity from background radiation in comparison to that of other conventional denoising methods.
similar resources
platelet-based mple algorithm for denoising of spect images: phantom and patient study
introduction: in this study the evaluation of a platelet-based maximum penalized likelihood estimation (mple) for denoising spect images was performed and compared with other denoising methods such as wavelets or butterworth filtration. platelet-based mple factorization as a multiscale decomposition approach has been already proposed for better edges and surfaces representation due to poisson n...
full textPlatelet-based MPLE Algorithm for Denoising of SPECT Images: Phantom and Patient Study
Introduction: In this study the evaluation of a Platelet-based Maximum Penalized Likelihood Estimation (MPLE) for denoising SPECT images was performed and compared with other denoising methods such as Wavelets or Butterworth filtration. Platelet-based MPLE factorization as a multiscale decomposition approach has been already proposed for better edges and surfaces representation due to Poisson n...
full textThe influence of misregistration between CT and SPECT images on the accuracy of CT-based attenuation correction of cardiac SPECT/CT imaging: Phantom and clinical studies
Introduction: Integration of single photon emission computed tomography (SPECT) and computed tomography (CT) scanners into SPECT/CT hybrid systems permit detection of coronary artery disease in myocardial perfusion imaging (MPI). Misregistration between CT and emission data can produce some errors in uptake value of SPECT images. The aim of this study was evaluate the influence...
full textdeveloping a pattern based on speech acts and language functions for developing materials for the course “ the study of islamic texts translation”
هدف پژوهش حاضر ارائه ی الگویی بر اساس کنش گفتار و کارکرد زبان برای تدوین مطالب درس "بررسی آثار ترجمه شده ی اسلامی" می باشد. در الگوی جدید، جهت تدوین مطالب بهتر و جذاب تر، بر خلاف کتاب-های موجود، از مدل های سطوح گفتارِ آستین (1962)، گروه بندی عملکردهای گفتارِ سرل (1976) و کارکرد زبانیِ هالیدی (1978) بهره جسته شده است. برای این منظور، 57 آیه ی شریفه، به صورت تصادفی از بخش-های مختلف قرآن انتخاب گردید...
15 صفحه اولModified Algorithm for Denoising of Mammographic Images
Mammographic images are used for detection of breast cancer in women. In this paper denoising algorithms for mammographic images in wavelet domain are considered. A modified approach for denoising of mammographic images using Diversity Enhanced Wavelet Transform has been proposed. Diversity of the Wavelet Transform is enhanced by taking different mother wavelets and different number of levels t...
full textA stack-based chaotic algorithm for encryption of colored images
In this paper, a new method is presented for encryption of colored images. This method is based on using stack data structure and chaos which make the image encryption algorithm more efficient and robust. In the proposed algorithm, a series of data whose range is between 0 and 3 is generated using chaotic logistic system. Then, the original image is divided into four subimages, and these four i...
full textMy Resources
Journal title
volume 15 issue 1
pages 8- 13
publication date 2007-01-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023