Physical Characteristics and Physically Effectiveness of Beet Pulp for Ruminant
author
Abstract:
Beet pulp as component of cattle feed can be processed in different way. Tis study was performed to characterize the physical properties of so called fine beet pulp (FBP); normal beet pulp (NBP) and pelleted beet pulp (PBP). The following parameters were determined: bulk density, kinetics of hydration, functional specific gravity (FSG), water holding capacity (WHC), soluble dry matter and intrinsic osmotic pressure (IOP) were investigated. Furthermore particle size distribution and its geometric mean were determined according to ASAE S424.1. All three types of beet pulp had similar composition, but different acid detergent insoluble nitrogen, bulk density, WHC, hydration rate, soluble matter and IOP. PBP had the highest (0.967 g/mL) and NBP had the lowest (0.623 g/mL) bulk density. WHC was 4.318, 5.261, 4.881 (g/DM) and hydration rate 0.0527, 0.0663, 0.0657 (g/DM/Min) for FBP, NBP and PBP, respectively. Grinding and pelleting significantly decreased WHC. Initial FSG of FBP was higher than of NBP and PBP (1.416 vs. 1.371 and 1.384, respectively). FSG changed with incubation time as particle size decreased. Final FSG of all three beet pulp types were similar. FBP had the highest soluble DM (28.61 vs. 17.98 and 23.66% of initial DM in NBP and PBP, respectively). In addition, FBP had the highest soluble ash (45.18 vs. 37.79 and 39.36% of initial ash in NBP and PBP, respectively). FBP had the highest IOP and there are not significant differences between NBP and PBP. The studied physical properties were highly correlated with the chemical composition of the pulp. So was bulk density negatively correlated with the neutral detergent fiber (NDF), crude protein (CP) and non-fiber carbohydrates (NFC), hydration rate and WHC and was positively correlated with the DM, EE, FSG, soluble DM and ash, and IOP. In addition, WHC was positively correlated with dry matter (DM), NDF, NFC, CP and EE, but also negatively correlated with bulk density, FSG, soluble DM, soluble ash and IOP. FSG was highly negatively correlated with DM, NDF, CP, NFC, EE, hydration rate and WHC and positive correlated with bulk density, soluble DM, soluble ash and IOP. The physical properties of beet pulp aid in establishing the nutritive value of feedstuffs for ruminant. They physical properties of feedstuff take into account the modifying role of the reticulo-ruminal function on the speed of the character of the quantitative and qualitative biochemical degradation process.
similar resources
determination of some physical and mechanical properties red bean
چکیده: در این تحقیق، برخی خواص فیزیکی و مکانیکی لوبیا قرمز به-صورت تابعی از محتوی رطوبت بررسی شد. نتایج نشان داد که رطوبت بر خواص فیزیکی لوبیا قرمز شامل طول، عرض، ضخامت، قطر متوسط هندسی، قطر متوسط حسابی، سطح تصویر شده، حجم، چگالی توده، تخلخل، وزن هزار دانه و زاویه ی استقرار استاتیکی در سطح احتمال 1 درصد اثر معنی داری دارد. به طوری که با افزایش رطوبت از 54/7 به 12 درصد بر پایه خشک طول، عرض، ضخام...
15 صفحه اولFungal secretomes enhance sugar beet pulp hydrolysis
The recalcitrance of lignocellulose makes enzymatic hydrolysis of plant biomass for the production of second generation biofuels a major challenge. This work investigates an efficient and economic approach for the enzymatic hydrolysis of sugar beet pulp (SBP), which is a difficult to degrade, hemicellulose-rich by-product of the table sugar industry. Three fungal strains were grown on different...
full textIntegrated hydrolyzation and fermentation of sugar beet pulp to bioethanol.
Sugar beet pulp is an abundant industrial waste material that holds a great potential for bioethanol production owing to its high content of cellulose, hemicelluloses, and pectin. Its structural and chemical robustness limits the yield of fermentable sugars obtained by hydrolyzation and represents the main bottleneck for bioethanol production. Physical (ultrasound and thermal) pretreatment meth...
full textRuminal Kinetics of Nutrients Degradation, Hydration, and Functional Specific Gravity of Three Types of Beet Pulp
Two experiments were conducted to evaluate the relationships between nutrients degradability, kinetics of hydration, functional specific gravity (FSG) of the three types of beet pulp (BP) including fine (FBP), normal (NBP) and pelleted (PBP) BP. In experiment 1, about 3 g of samples was weighed in sealed nylon bags (6 cm×7.5 cm, 40±5 µm pore size), incubated in rumen of two cannulated Holstein ...
full textMy Resources
Journal title
volume 6 issue 2
pages 317- 326
publication date 2016-06-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023