Photocatalytic treatment of spent caustic wastewater in petrochemical industries
Authors
Abstract:
In this study, the photocatalytic method was used for treating the spent caustic in the wastewater of Olefin units used in petrochemical industries which contain large amounts of total dissolved solids (TDS). By using the synthetic photocatalyst of suspended titanium dioxide and measuring the chemical oxygen demand (COD) which was reduced in the photocatalyst (lbc) process, the values of COD were modeled and evaluated by means of the Box-Behnken (BBD) and the artificial neural network (ANN) using experimental tests in a double-cylindrical-shell photo reactor. According to the applied calculations, it was found that the artificial neural network was a more suitable method than the experimental design in modeling and forecasting the amount of COD removal. The modeling employed in this research showed that increasing the concentration of the photocatalyst in a state of neutral pH enhanced the COD removal up to the optimal amount of 1.31 g/L without restrictions and 2 g/L with restrictions at the rate of 81% and 79%, respectively. In addition, the study of the parameter effects including oxidizer amount, aeration rate, pH, and the amount of loaded catalyst indicated that all factors except pH had a positive effect on the model; furthermore, if the interactions were neglected, the COD removal efficiency would increase by increasing each of these factors (except pH). In addition, there was no interaction between the aeration and the concentration of the photocatalyst, and the acidic pH was more suitable at low concentrations of the photocatalyst. Besides that, by increasing the pH, the efficiency of removal was reduced when the oxidant was at its low level. The results showed that photolysis and adsorption adoptions had a very small effect on the efficiency of the removal of COD compared to the photocatalyst adoptions, and it was insignificant. In addition, the photocatalytic method had an acceptable capacity for removing the phenol in the wastewater sample, whereas it was inefficient in reducing the sulfide solution in the wastewater.
similar resources
Investigation of spent caustic wastewater treatment through response surface methodology and artificial neural network in a photocatalytic reactor
In this research, photocatalytic degradation method has been introduced to clean up Spent Caustic of Olefin units of petrochemical industries (neutralized Spent Caustic by means of sulfuric acid) in the next step, adaptable method and effective parameters in the process performance have been investigated. Chemical oxygen demand (COD) was measured by the commercial zinc oxide that synthesized wi...
full textEvaluation of sequencing batch reactor performance for petrochemical wastewater treatment
Sequencing batch reactor (SBR) technology has found many applications in industrial wastewater treatment in recent years. The aim of this study was to determine the optimal time for a cycle of the sequencing batch reactor (SBR) and evaluate the performance of a SBR for petrochemical wastewater treatment in that cycle time. The reactor was operated with a suspended biomass configuration under ae...
full textRegeneration and treatment of sulfidic spent caustic using analytic hierarchy process
Background: Sulfur compounds must be removed from petroleum because they contribute to environmental pollution. A strong alkaline solution such as caustic soda is used to remove these compounds. This spent caustic has high values for chemical oxygen demand (COD) concentration, pH and total sulfur. In this study, the regeneration and treatment methodology of sulfidic spent caustic was inve...
full textMinimizing Fresh and Wastewater Using Water Pinch Technique in Petrochemical Industries
This research involves the design and analysis of pinch-based water/wastewater networks to minimize water utility in the petrochemical and petroleum industries. A study has been done on Tehran Oil Refinery to analyze feasibilities of regeneration, reuse and recycling of water network. COD is considered as a single key contaminant. Amount of freshwater was reduced about 149m/h (43.8%) regarding ...
full textWastewater Treatment of Stone Cutting Industries by Coagulation Process
Background & Aims of the Study: The wastewater created as a result of stone cutting industries enters some pools for re-consumption so that its suspended solids settle by gravity. By taking to account the high volume of water and sludge, treatment of wastewater and removal of sludge cause many problems for stone cutting units. The objective of this study was to determine the quality of wast...
full textA Review on Wastewater Treatment for Petroleum Industries and Refineries
The industrial wastewater treatment is gaining more and more importance with the rapidly increasing need for expansion of existing plants and erection of new plants to cater the needs of chemical, pharmaceutical and petrochemical products and intermediates. The treatment of the wastewater is key to the sustainable and acceptable industrial growth. Petroleum industries and refineries are importa...
full textMy Resources
Journal title
volume 2 issue 3
pages 153- 168
publication date 2017-04-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023