Photoacoustic image reconstruction of melanoma in skin tissue using time reversal method
Authors
Abstract:
This article doesn't have abstract
similar resources
Photoacoustic tomography in absorbing acoustic media using time reversal
The reconstruction of photoacoustic images typically neglects the effect of acoustic absorption on the measured time domain signals. Here, a method to compensate for acoustic absorption in photoacoustic tomography is described. The approach is based on time-reversal image reconstruction and an absorbing equation of state which separately accounts for acoustic absorption and dispersion following...
full textAdvanced photoacoustic image reconstruction using the k-Wave toolbox
Reconstructing images from measured time domain signals is an essential step in tomography-mode photoacoustic imaging. However, in practice, there are many complicating factors that make it difficult to obtain high-resolution images. These include incomplete or undersampled data, filtering effects, acoustic and optical attenuation, and uncertainties in the material parameters. Here, the process...
full textQuantitative Photoacoustic Image Reconstruction using Fluence Dependent Chromophores
In biomedical photoacoustic imaging the images are proportional to the absorbed optical energy density, and not the optical absorption, which makes it difficult to obtain a quantitatively accurate image showing the concentration of a particular absorbing chromophore from photoacoustic measurements alone. Here it is shown that the spatially varying concentration of a chromophore whose absorption...
full textA photoacoustic image reconstruction method using total variation and nonconvex optimization
BACKGROUND In photoacoustic imaging (PAI), the reduction of scanning time is a major concern for PAI in practice. A popular strategy is to reconstruct the image from the sparse-view sampling data. However, the insufficient data leads to reconstruction quality deteriorating. Therefore, it is very important to enhance the quality of the sparse-view reconstructed images. METHOD In this paper, we...
full textAttenuation Correction in SPECT during Image Reconstruction using an Inverse Monte Carlo Method: A Simulation Study
Introduction: The main goal of SPECT imaging is to determine activity distribution inside the organs of the body. However, due to photon attenuation, it is almost impossible to do a quantitative study. In this paper, we suggest a mathematical relationship between activity distribution and its corresponding projections using a transfer matrix. Monte Carlo simulation was used to find a precise tr...
full textMy Resources
Journal title
volume 16 issue 3
pages 28- 22
publication date 2019-10
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023