Phase-transfer catalysis for synthesis of ethyl 2-(4-nitrophenoxy)acetate under sonication- kinetic aspects
Authors
Abstract:
Ultrasound assisted phase-transfer catalyzed preparation of ethyl 2-(4-nitrophenoxy)acetate from the corresponding p-nitrophenol and ethyl 2-bromoacetate using the mild solid base, anhydrous potassium carbonate, under very mild conditions is reported. The solid-liquid reactions were performed in a batch reactor equipped with reflux condenser, and ultrasonic irradiations were introduced using an ultrasonic bath operating at a frequency of 28 kHz with a power rating of 300 W. The reaction was carried out at 50°C under pseudo-first order conditions and was monitored by gas chromatography (GC). From the experimental data, a rate expression had been developed to explain the kinetic behavior of the reaction from which the apparent rate constant (kapp) of the organic phase was attained. The effects of different operating parameters such as stirring rate, temperature, catalyst loading and kind of Phase-transfer catalysts, base variation and quantity of water, kind of solvents have been investigated to maximize the yield of synthesis of ethyl 2-(4-nitrophenoxy)acetate.
similar resources
Synthesis of 1-(isopentyloxy)-4-nitrobenzene under ultrasound assisted liquid-liquid phase-transfer catalysis
In this paper, we report the reaction of isoamyl alcohol and 1-chloro-4-nitrobenzene was carried out in a batch reactor under aqueous-organic biphasic conditions using the techniques like phase transfer catalysis and ultrasound irradiation. Tetrabutylammonium bromide (TBAB) was employed as the phase transfer catalyst. The reaction is greatly enhanced by adding a small quantity of phase-transfer...
full textSynthesis of 1,4-bis (benzyloxy)Benzene Under Sonication and a Multi-Site Phase-Transfer Catalyst in Solid-Liquid Condition-Kinetic Aspects
The ultrasound assisted preparation of 1,4-bis(benzyloxy)benzene from the reaction of benzyl chloride (BC) and hydroquinone was carried out successfully using sodium hydroxide and catalyzed by a multi-site phase-transfer catalyst (MPTC) viz., 1,4-dibenzyl-1,4-diazoniabicyclo[2.2.2] octane dichloride in a solid–liquid reaction condition (SL-PTC). Water is only introduced in a trace quantity to t...
full textSelective and efficient synthesis of 3-indolyl-2-oxindoles under catalysis of LiClO4
An efficient and convenient protocol for synthesis of 3-hydroxy-3-indolyl-2-oxindoles and 3,3-diindolyl-2-oxindoles is presented here. The syntheses were achieved selectively under catalysis of LiClO4 whereby the products were obtained purely.
full textsynthesis of platinum nanostructures in two phase system
چکیده پلاتین، فلزی نجیب، پایدار و گران قیمت با خاصیت کاتالیزوری زیاد است که کاربرد های صنعتی فراوانی دارد. کمپلکس های پلاتین(ii) به عنوان دارو های ضد سرطان شناخته شدند و در شیمی درمانی بیماران سرطانی کاربرد دارند. خاصیت کاتالیزوری و عملکرد گزینشی پلاتین مستقیماً به اندازه و- شکل ماده ی پلاتینی بستگی دارد. بعضی از نانو ذرات فلزی در سطح مشترک مایع- مایع سنتز شده اند، اما نانو ساختار های پلاتین ب...
A One-pot Condensation for Synthesis 2-methyl-4-phenylpyrano[3, 2-c] chromen-5(4H)-one and Synthesis of Warfarin by Ionic Liquid Catalysis
The anticoagulant racemic warfarin is synthesized by the Michael addition of 4-hydroxycoumarin with benzalacetone in the present of equimolar amounts of imidazolium based ionic liquids [bmim] BF4 and [bmim] Br and other reaction solvents such as H2O, pyridine and ammonia in five different tests. Also synthesis of a derivative of warfarin (2-methyl-4-phenyl pyrano [3, 2-c] chromen-5(4H)-one) und...
full textSelective and efficient synthesis of 3-indolyl-2-oxindoles under catalysis of LiClO4
An efficient and convenient protocol for synthesis of 3-hydroxy-3-indolyl-2-oxindoles and 3,3-diindolyl-2-oxindoles is presented here. The syntheses were achieved selectively under catalysis of LiClO4 whereby the products were obtained purely.
full textMy Resources
Journal title
volume 13 issue 2
pages 80- 87
publication date 2016-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023