Petrochemical wastewater treatment by modified electro-Fenton process with nano iron particles

Authors

  • Maryam Adimi Department of Chemical engineering, Farahan branch, Islamic Azad University, Farahan, Iran
Abstract:

Petrochemical manufacturing wastewaters often contain a high concentration of biodegradable com-pounds that possess either toxicity or activity inhibition to the biological unit. In this paper, COD removal from Petrochemical wastewaters by electro-Fenton process was studied. The effect of operating conditions such as reaction time, current density, pH, H2O2/Fe2+ molar ratio, and H2O2 of petrochemical wastewater (PW) (ml/l) on the performance of the process has been studied. The experimental results showed that COD was 75.52% removed by the reaction with OH radicals generated from electrochemically assisted Fenton’s reaction. With our cell design, the higher oxidation rate has been obtained applying a current of 57.01 mA, at pH 2.92 and in the presence of 0.3 mM Fe2+ as catalyst and at reaction time of 86.33 minutes.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

treatment of landfill leachate by fenton process with nano sized zero valent iron particles

leachate treatment from municipal landfills has been always a major anxiety in waste management due to its high level of various contaminations. in this paper the effect of nanosized zero valent iron particles (nzvi) in fenton process for the treatment of high cod strength landfill leachate was scrutinized. the results corroborated this procedure was fast and efficient. in fact, about 87% of in...

full text

treatment of landfill leachate by fenton process with nano sized zero valent iron particles

leachate treatment from municipal landfills has been always a major anxiety in waste management due to its high level of various contaminations. in this paper the effect of nanosized zero valent iron particles (nzvi) in fenton process for the treatment of high cod strength landfill leachate was scrutinized. the results corroborated this procedure was fast and efficient. in fact, about 87% of in...

full text

Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles

BACKGROUND The problems related to conventional Fenton oxidation, including low pH required and production of considerable amounts of sludge have led researchers to investigate chelating agents which might improve the operating range of pH and the use of nano iron particle to reduce the excess sludge. The pyrene removal from contaminated soils by modified Fenton oxidation at neutral pH was defi...

full text

Wastewater Treatment with Chitosan Nano-particles

Chitosan interact with polyphosphate ions to form nanoparticles with different diameters depending on the mutual ratio among them. Three nanoparticles have been prepared and were characterized by spectral and X-ray diffraction tools. TEM analysis revealed there diameters. The nanoparticles were thoroughly studied for wastewater treatment such as the removal of Total Suspended Solid (TSS), Bioch...

full text

The Modified Fenton Process for Decolorization of Dye Wastewater

A novel modified Fenton process using heterogeneous catalyst (swarf) was developed to catalyze the oxidation reaction of azo dye Acid Red 18. It was found that swarf could be used to replace iron salts as a catalyst for the Fenton reaction. The examined continuous Fenton process proved to be very efficient for decolorization of simulated wastewater containing 100 mg/dm3 Acid Red 18. Performance...

full text

Efficiency of Fenton Process in Olive Oil Mill Wastewater Treatment

Background and purpose: Wastewater olive processing industries have significant amounts of organic compounds resistant to biodegradation which are hazardous if not treated and discharged to the environment. Advanced oxidation processes such as Fenton process have been considered to increase and improve the biological degradability of this type of wastewater. Current study aimed at investigating...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 4

pages  215- 223

publication date 2015-12-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023