Performance Analysis of Disk Type Variable Reluctance Resolver under Mechanical and Electrical Faults

Authors

  • F. Tootoonchian Electrical Engineering Department, Iran University of Science and Technology, Tehran, Iran.
  • F. Zare Electrical Engineering Department, Isfahan University of Technology, Isfahan, Iran.
Abstract:

Disk Type Variable Reluctance (DTVR) resolvers have distinguished performance under run out fault comparing to conventional sinusoidal rotor resolvers. However, their accuracy under inclined rotor fault along with different types of eccentricities includes static and dynamic eccentricities are questioned. Furthermore, due to thin copper wires that are used for signal and excitation coils of resolver there is high risk of short circuit fault in the coils. So, in this study the performance of the sinusoidal rotor DTVR resolver under the mentioned faults are studied. The quality of output voltages along with position error of the sensor is discussed. 3-D time stepping finite element method is used to show the effect of different faults. Finally, the prototype of the studied resolver is constructed and tested. The employed test bed is built in such a way that is able to apply controllable level of different mechanical faults. Good agreement is obtained between the finite element and the experimental results, validating the success of the presented analysis.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Electrical and Mechanical Performance of Hybrid and Non-hybrid Composites

This paper investigated the moisture absorption, mechanical behavior and the dielectric performance of hybrid and non-hybrid polymeric composites. Hand lay-up technique was used for processing carbon; glass reinforced polyester resin composites (non-hybrid) and carbon-glass/polyester hybrid composites with various fiber configurations. The maximum resistance of water absorption was obtained for...

full text

Stress Analysis of Rotating Thick Truncated Conical Shells with Variable Thickness under Mechanical and Thermal Loads

In this paper, thermo-elastic analysis of a rotating thick truncated conical shell subjected to the temperature gradient, internal pressure and external pressure is presented. Given the existence of shear stress in the conical shell due to thickness change along the axial direction, the governing equations are obtained based on first-order shear deformation theory (FSDT). These equations are so...

full text

Performance Analysis of Disk Arrays under Failure

Disk arrays (RAID) have been proposed as a possible approach to solving the emerging I/O bottleneck problem. The performance of a RAID system when all disks are operational and the MTTF,,, (mean time to system failure) have been well studied. However, the performance of disk arrays in the presence of failed disks has not received much attention. The same techniques that provide the storage effi...

full text

Electrical and Mechanical Performance of Zirconia-Nickel Functionally Graded Materials

In the present work, six-layered (Zirconia/Nickel) functionally graded materials were fabricated via powder metallurgy technique (PMT). The microstructure, fracture surface and the elemental analysis of the prepared components were studied, and their linear shrinkage, electrical conductivity, fracture toughness and Vickers hardness were evaluated. The results show that the linear shrinkage of t...

full text

A New Type of Direct-Drive Variable-Reluctance Actuators

Most advanced manufacturing processes require highspeed and high precision motion control for material transfer, packaging, assembly, and electrical wiring. Examples are surface mounting of electronic components, wire bonding of semiconductor chips, and assembly of watches and hard disks. To achieve precise motion control, most of these high-performance manufacturing machines use rotary d.c. or...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 14  issue 3

pages  299- 307

publication date 2018-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023