Palladium nanoparticles supported on carbon black powder as an effective anodic catalyst for application in a direct glucose alkaline fuel cell

Authors

  • Abolfath Eshghi Hydrogen and Fuel Cell Research Laboratory, Department of chemistry, Yasouj University, Yasouj, Iran, Ph.D. Student
  • Mehdi Kheirmand Department of Chemistry, School of basic sciences, Yasouj University, Yasouj, Iran
Abstract:

Palladium nanoparticles supported on carbon black powder (Vulcan XC-72) nanocomposite (Pd/C) are synthesized as the catalyst for the anodic oxidation of glucose for use in a direct glucose alkaline fuel cell (DGAFC). Characterization of the catalyst is carried out using physical and electrochemical methods. It is observed that Palladium nanoparticles are uniformly dispersed onto the carbon black powder nanocomposite support. The catalytic properties of the catalyst for glucose electro-oxidation were studied using electrochemical methods such as cyclic voltammetry and chronoamperometry. Cyclic voltammetry shows that this catalysts exhibit high electro catalytic activity for glucose oxidation. Pd/Vulcan XC-72 /glassy carbon electrode exhibits a well-defined catalytic oxidation peak current increasing linearly with an increase in the glucose concentration in rang of 10 mM to 60 mM. Chronoamperometry indicate that Pd/Vulcan XC-72 exhibits a steady state activity for glucose oxidation. Results show that the prepared Pd/Vulcan XC-72 as an effective anodic catalyst toward glucose electro-oxidation. Therefore this electrode is a good candidate for application in direct glucose alkaline fuel cells.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Assembly of a Cost-Effective Anode Using Palladium Nanoparticles for Alkaline Fuel Cell Applications

Nanotechnology allows the synthesis of nanoscale catalysts, which offer an efficient alternative for fuel cell applications. In this laboratory experiment, the student selects a cost-effective anode for fuel cells by comparing three different working electrodes. These are commercially available palladium (Pd) and glassy carbon (GC) electrodes, and a carbon paste (CP) electrode that is prepared ...

full text

The Performance of Electron-Mediator Modified Activated Carbon as Anode for Direct Glucose Alkaline Fuel Cell

Six different electron mediators were immobilized on the activated carbon (AC) anode and their effects on performance of a direct glucose alkaline fuel cell were explored. 2-hydroxy-1, 4-naphthoquinone (NQ), methyl viologen (MV), neutral red (NR), methylene blue (MB), 1, 5-dichloroanthraquinone (DA) and anthraquinone (AQ) were doped in activated carbon (AC), respectively, and pressed on nickel ...

full text

Platinum Nanoparticles Deposited on Oxygen-Containing Functional Groups at Carbon Vulcane XC-72 as a Cathode Catalyst for Direct Methanol Fuel Cell

Surface oxidized carbon vulcane XC-72 is prepared as catalyst support and platinumnanoparticles are chemically anchored onto the modified surface. The nanoparticles of Pt weresynthesized by reduction of H2PtCl6 with sodium borohydride in a 5.5 M buffer solution ofsodium citrate; the complexation of citrate with metal ions is beneficial to the formation ofnanoparticles. The electro-oxidation of ...

full text

Methanol-Tolerant Platinum-Palladium Catalyst Supported on Nitrogen-Doped Carbon Nanofiber for High Concentration Direct Methanol Fuel Cells

Pt-Pd catalyst supported on nitrogen-doped carbon nanofiber (N-CNF) was prepared and evaluated as a cathode electrode of the direct methanol fuel cell (DMFC). The N-CNF, which was directly synthesized by the catalytic chemical vapor deposition from acetonitrile at 640 °C, was verified as having a change of electrochemical surface properties such as oxygen reduction reaction (ORR) activities and...

full text

Preparation and Characterization of Electrocatalyst Nanoparticles for Direct Methanol Fuel Cell Applications Using β-D-glucose as Protection Agent

In this study, the activity, stability and performance of carbon supported platinum (Pt/C) electrocatalyst in cathode and carbon supported Pt and ruthenium (PtRu/C) electrocatalyst in anode of direct methanol fuel cell (DMFC) were studied. The Pt/C and PtRu/C electrocatalysts were prepared by impregnation reduction method. The β-D-glucose was used as protection agent to reduce the particle size...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 3  issue 1

pages  11- 17

publication date 2016-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023