P3: Neuronal Death Following Posttraumatic Excitability and Seizure
Authors
Abstract:
This article doesn't have abstract
similar resources
p3: neuronal death following posttraumatic excitability and seizure
seizure may occur after mild traumatic brain injury (tbi), and the severity of tbi can be considered the most crucial factor for an increased risk of recurring seizures as well as for the development of posttraumatic epilepsy. however, the effect of seizures in epileptogenesis after mild tbi cannot yet be accurately confirmed. this study was designed to determine whether mild tbi increases seiz...
full textNeuronal injury and death following focal mild brain injury: The role of network excitability and seizure
Objective(s): While traumatic brain injury (TBI) is a predisposing factor for development of post-traumatic epilepsy (PTE), the occurrence of seizures following brain trauma can infuriate adverse consequences of brain injury. However, the effect of seizures in epileptogenesis after mild TBI cannot yet be accurately confirmed. This study was designed to investigate the ...
full textMechanisms regulating neuronal excitability and seizure development following mTOR pathway hyperactivation
The phosphatidylinositol-3-kinase/phosphatase and tensin homolog (PTEN)-mammalian target of rapamycin (mTOR) pathway regulates a variety of neuronal functions, including cell proliferation, survival, growth, and plasticity. Dysregulation of the pathway is implicated in the development of both genetic and acquired epilepsies. Indeed, several causal mutations have been identified in patients with...
full textApoptosis signalling pathways in seizure-induced neuronal death and epilepsy.
Delineating the molecular pathways underlying seizure-induced neuronal death may yield novel strategies for brain protection against prolonged or repetitive seizures. Glutamate-mediated excitotoxicity and necrosis is a primary contributing mechanism but seizures also activate programmed (apoptotic) cell death pathways. Apoptosis signalling pathways are typically initiated following perturbation...
full textProtective Effects of Protocatechuic Acid on Seizure-Induced Neuronal Death
Protocatechuic acid (PCA) is a type of phenolic acid found in green tea and has been shown to have potent antioxidant and anti-inflammatory properties. However, the effect of PCA on pilocarpine seizure-induced neuronal death in the hippocampus has not been evaluated. In the present study, we investigated the potential therapeutic effects of PCA on seizure-induced brain injury. Epileptic seizure...
full textIntracellular Gold Nanoparticles Increase Neuronal Excitability and Aggravate Seizure Activity in the Mouse Brain
Due to their inert property, gold nanoparticles (AuNPs) have drawn considerable attention; their biological application has recently expanded to include nanomedicine and neuroscience. However, the effect of AuNPs on the bioelectrical properties of a single neuron remains unknown. Here we present the effect of AuNPs on a single neuron under physiological and pathological conditions in vitro. AuN...
full textMy Resources
Journal title
volume 4 issue 4
pages 25- 25
publication date 2017-02
By following a journal you will be notified via email when a new issue of this journal is published.
No Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023