p-Analog of the Semigroup Fourier-Steiltjes Algebras

author

Abstract:

In  this paper we define the $p$-analog of the restericted reperesentations and also the $p$-analog of the Fourier--Stieltjes algebras on the inverse semigroups . We improve some results about Herz algebras on Clifford semigroups. At the end of this paper we give the necessary and sufficient condition for amenability of these algebras on Clifford semigroups.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

SPECTRUM OF THE FOURIER-STIELTJES ALGEBRA OF A SEMIGROUP

For a unital foundation topological *-semigroup S whose representations separate points of S, we show that the spectrum of the Fourier-Stieltjes algebra B(S) is a compact semitopological semigroup. We also calculate B(S) for several examples of S.

full text

Biflatness of certain semigroup algebras

In the present paper, we consider biflatness of certain classes of semigroupalgebras. Indeed, we give a necessary condition for a band semigroup algebra to bebiflat and show that this condition is not sufficient. Also, for a certain class of inversesemigroups S, we show that the biflatness of ell^{1}(S)^{primeprime} is equivalent to the biprojectivity of ell^{1}(S).

full text

Hyperbolicity of Semigroup Algebras

Let A be a finite dimensional Q-algebra and Γ ⊂ A a Z-order. We classify those A with the property that Z 6 →֒U(Γ). We call this last property the hyperbolic property. We apply this in the case that A = KS a semigroup algebra with K = Q or K = Q( √ −d). In particular, when KS is semi-simple and has no nilpotent elements, we prove that S is an inverse semigroup which is the disjoint union of Higm...

full text

Differential Algebras on Semigroup Algebras

This paper studies algebras of operators associated to a semigroup algebra. The ring of differential operators is shown to be anti-isomorphic to the symmetry algebra and both are described explicitly in terms of the semigroup. As an application, we produce a criterion to determine the equivalence of A-hypergeometric systems. Conditions under which associated algebras are finitely generated are ...

full text

Module cohomology group of inverse semigroup algebras

Let $S$ be an inverse semigroup and let $E$ be its subsemigroup of idempotents. In this paper we define the $n$-th module cohomology group of Banach algebras and show that the first module cohomology group $HH^1_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is zero, for every odd $ninmathbb{N}$. Next, for a Clifford semigroup $S$ we show that $HH^2_{ell^1(E)}(ell^1(S),ell^1(S)^{(n)})$ is a Banach sp...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue None

pages  55- 66

publication date 2015-10

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023