Ordered nanoporous carbon (CMK-3) coated fiber for solid-phase microextraction of benzene and chlorobenzenes in water samples

Authors

  • Mansoor Anbia Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
  • Naser kakoli khataei Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
  • Samira Salehi Research Laboratory of Nanoporous Materials, Faculty of Chemistry, Iran University of Science and Technology, Tehran, Iran
Abstract:

Nanoporous carbons (CMK-3) were prepared and have been used as a fiber coating for headspace solid phase microextraction (HS-SPME). The prepared materials were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD) and N2 adsorption/desorption isotherms. The efficiency of the fiber was evaluated using a gas chromatography (GC) system for the extraction of benzene (B) and chlorobenzenes (CBs) from the headspace of aqueous samples. The prepared nanomaterial was coated onto a copper wire for fabrication of the SPME fiber. These fibers featured advantages like easy and fast preparation, high thermal and mechanical stability. To optimize different parameters which influence the extraction efficiency such as sample volume, extraction temperature, extraction time, ionic strength and stirring rate, a Taguchi OA16 (45) orthogonal array experimental design was used. Based on the results obtained from the analysis of variance (ANOVA), the optimum conditions for extraction were established as: 12 mL sample volume; laboratory temperature; 20 % (w/v) NaCl; 35 min extraction time and stirring rate of 600 rpm. Under the optimized conditions for B and CBs, the linearity was from 2.5 to 800 µg/L, the relative standard deviation (RSD %) of the method was between 5.2 and 9.3% and limit of detections (LODs) was between 0.09 and 0.28 µg/L. The recovery values were from 85.40% to 104.20 % in water samples. Finally, the applicability of the proposed method was evaluated by the extraction and determination of B and CBs in the water samples.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Ordered Nanoporous Carbon Based Solid-Phase Microextraction for the Analysis of Nitroaromatic Compounds in Aqueous Samples

In this paper, the possibility of using a new ordered nanoporous carbon as a new fiber in headspace solid phase microextraction (HS-SPME) to determine of mononitrotoluenes (MNTs) in waste water is demonstrated. The structural order and textural properties of the ordered nanoporous carbon were studied by X Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) images and nitrogen adsorpti...

full text

ordered nanoporous carbon based solid-phase microextraction for the analysis of nitroaromatic compounds in aqueous samples

in this paper, the possibility of using a new ordered nanoporous carbon as a new fiber in headspace solid phase microextraction (hs-spme) to determine of mononitrotoluenes (mnts) in waste water is demonstrated. the structural order and textural properties of the ordered nanoporous carbon were studied by x ray diffraction (xrd), scanning electron microscopy (sem) images and nitrogen adsorption i...

full text

HCl- Etched Steel Fiber for Determination of Phthalates in Water Samples by Solid-Phase Microextraction

In the present work, a stainless steel wire was etched by hydrochloric acid during a chemical etching process. The obtained black layer on the surface of the fiber was used as sorbent for extraction of trace amount of phthalates in the aqueous samples by solid phase microextraction. New fiber efficiency was investigated using a home-made solid-phase microextraction (SPME) device and gas chr...

full text

Solid-phase microextraction and headspace solid-phase microextraction for the determination of polychlorinated biphenyls in water samples.

A solid-phase microextraction (SPME) method has been developed for the quantification of polychlorinated biphenyls (PCBs) in water samples. Parameters such as sampling time, volume of water, volume of headspace, temperature, addition of salts, and agitation of the sample were studied. Because the time for reaching equilibrium between phases takes several hours or days, depending on the experime...

full text

application and construction of carbon paste modified electrodes developed for determination of metal ions in some real samples

ساخت الکترودهاِی اصلاح شده ِیکِی از چالشهاِی همِیشگِی در دانش شیمِی بوِیژه شیمِی تجزیه مِی باشد ،که با در نظر گرفتن سادگِی ساخت، کاربردی بودن و ارزان بودن روش مِی توان به باارزش بودن چنِین سنسورهاِی پِی برد.آنچه که در ادامه آورده شده به ساخت و کاربرد الکترودهاِی اصلاح شده با استفاده از نانو ذرات در اندازه گِیرِی ولتامترِی آهن وکادمِیم اشاره دارد. کار اول اختصاص دارد به ساخت الکترود خمِیر کربن اصلاح شده با لِیگاند داِ...

15 صفحه اول

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 1

pages  13- 22

publication date 2018-01-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023