OPTIMUM PLACEMENT AND PROPERTIES OF TUNED MASS DAMPERS USING HYBRID GENETIC ALGORITHMS

Authors

  • M.N.S. Hadi
  • Y. Arfiadi
Abstract:

Tuned mass dampers (TMDs) systems are one of the vibration controlled devices used to reduce the response of buildings subject to lateral loadings such as wind and earthquake loadings. Although TMDs system has received much attention from researchers due to their simplicity, the optimization of properties and placement of TMDs is a challenging task. Most research studies consider optimization of TMDs properties. However, the placement of TMDs in a building is also important. This paper considers optimum placement as well as properties of TMDs. Genetic algorithms (GAs) is used to optimize the location and properties of TMDs. Because the location of TMDs at a particular floor of a building is a discrete number, it is represented by binary coded genetic algorithm (BCGA), whereas the properties of TMDS are best suited to be represented by using real coded genetic algorithm (RCGA). The combination of these optimization tools represents a hybrid coded genetic algorithm (HCGA) that optimizes discrete and real values of design variables in one arrangement. It is shown that the optimization tool presented in this paper is stable and has the ability to explore an unknown domain of interest of the design variables, especially in the case of real coding parts. The simulation of the optimized TMDs subject to earthquake ground accelerations shows that the present approaches are comparable and/or outperform the available methods.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Performance-Based Placement Design of Tuned Electromagnetic Inertial Mass Dampers

This paper presents a performance-based placement design method for the control of the earthquake responses of a multistory building using tuned electromagnetic inertial mass dampers (T-EIMDs). The T-EIMD consists of a ball screw mechanism, a gear, a flywheel, and an electric generator installed in a cylinder, and a spring element connected in series. The ball screw mechanism converts the axial...

full text

Semiactive Tuned Mass Dampers

Studies have already demonstrated the successful use of linear semiactive damping devices, such as variable orifice (VO) dampers, for semiactive TMD systems. More recently, nonlinear semiactive damping devices, such as magnetorheological (MR) dampers, have also been shown to be effective for semiactive control of TMDs. Though semiactive dampers differ widely, with responses ranging from linear ...

full text

Tuned Mass Dampers in Passenger Cars

It is very well known that tuned mass dampers are engineered to minimise the vibrations in buildings in earthquake prone areas and in some cases machinery [1]. This paper evaluates the utility of Tuned Mass Dampers in passenger cars. For the same suspension system, addition of a tuned mass was found to reduce the transmissibility by a considerable amount. Addition of a tuned mass also helps in ...

full text

Tuned Mass Dampers for Earthquake Vibrations of High-rise Buildings using Bee Colony Optimization Technique

This paper investigates the application of Artificial Bee Colony (ABC) method for the optimization of Tuned Mass Dampers (TMDs) employed for high-rise structures including Soil Structure Interaction (SSI). The model is a 40-story building, and Newmark method is utilized for the structure response to Bam earthquake data. The objective is to decrease both maximum displacement and accelerati...

full text

COMPARISON OF RELIABILITY BASED AND DISPLACEMENT BASED OPTIMIZATION OF TUNED MASS DAMPERS REGARDING UNCERTAINTY

Some structural control systems have been devised to protect structures against earthquakes, which the tuned mass damper (TMD) being one of the earliest. The effect of a tuned mass damper depends on its properties, such as mass, damping coefficient, and stiffness. The parameters of tuned mass dampers need to be tuned based on the main system and applied load. In most of the papers, the paramete...

full text

THE CAPABILITY OF OPTIMAL SINGLE AND MULTIPLE TUNED MASS DAMPERS UNDER MULTIPLE EARTHQUAKES

The main focus of this research has been to investigate the effectiveness of optimal single and multiple Tuned Mass Dampers (TMDs) under different ground motions as well as to develop a procedure for designing TMD and MTMDs to be effective under multiple records. To determine the parameters of TMD and MTMDs under multiple records various scenarios have been suggested and their efficiency has be...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 1  issue 1

pages  167- 187

publication date 2011-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023