Optimum allocation of Iranian oil and gas resources using multi-objective linear programming and particle swarm optimization in resistive economy conditions

Authors

  • Mojtaba Salehi Department of Industrial Engineering, Payame Noor University, Tehran, Iran
Abstract:

This research presents a model for optimal allocation of Iranian oil and gas resources in sanction condition based on stochastic linear multi-objective programming. The general policies of the resistive economy include expanding exports of gas, electricity, petrochemical and petroleum products, expanding the strategic oil and gas reserves, increasing added value through completing the petroleum value chain and decreasing crude oil and gas sale. The proposed mathematical model includes three   objective functions:   minimizing imports of petrochemical products and crude oil sale, maximizing economic benefits, and minimizing the environmental pollutions. The model includes constraints of gas, oil, and electricity flow balance and also supply and demand capacity constraints. A Pareto-archive-based particle swarm algorithm was used to solve the model. The results of proposed algorithm were compared with NSGA-IIresults. The comparison showed the proposed algorithm is more accurate in solving of the energy resource allocation model in 2016-2031 timespan. The results of this study can present helpful solutions to oil and gas resource allocation planning in Iran. The main contribution of this paper is proposing a new stochastic linear multi-objective programming with considering the general policies of resistive economy and solving the model with a new Pareto-archive-based particle swarm algorithm.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Multi-Objective Design Optimization of a Linear Brushless Permanent Magnet Motor Using Particle Swarm Optimization (PSO)

In this paper a brushless permanent magnet motor is designed considering minimum thrust ripple and maximum thrust density (the ratio of the thrust to permanent magnet volumes). Particle Swarm Optimization (PSO) is used as optimization method. Finite element analysis (FEA) is carried out base on the optimized and conventional geometric dimensions of the motor. The results of the FEA deal to ...

full text

OFDM Systems Resource Allocation using Multi- Objective Particle Swarm Optimization

Orthogonal Frequency Division Multiplexing (OFDM) has the inherent properties of being robust to interference and frequency selective fading and is de facto the adopted multiplexing techniques for the 4 th generation wireless network systems. In wireless system, resources such as bandwidth and power are limited, intelligent allocation of these resources to users are crucial for delivering the b...

full text

Multi-Objective Optimization of Solar Thermal Energy Storage Using Hybrid of Particle Swarm Optimization and Multiple Crossover and Mutation Operator

Increasing of net energy storage (Q net) and discharge time of phase change material (t PCM), simultaneously, are important purpose in the design of solar systems. In the present paper, Multi-Objective (MO) based on hybrid of Particle Swarm Optimization (PSO) and multiple crossover and mutation operator is used for Pareto based optimization of solar systems. The conflicting objectives are Q net...

full text

Using Modular Pole for Multi-Objective Design Optimization of a Linear Permanent Magnet Synchronous Motor by Particle Swarm Optimization (PSO)

In this paper particle swarm optimization (PSO) is used for a design optimization of a linear permanent magnet synchronous motor (LPMSM) considering ultra low thrust force ripples, low magnet consumption, improved efficiency and thrust. The influence of PM material is discussed, too and the modular poles are proposed to achieve the best characteristic. PM dimensions and material, air gap and mo...

full text

Particle Swarm Optimization for Multi-Objective Web Service Location Allocation

Web service location allocation problem is an important problem in the modern IT industry. In this paper, the two major objectives, i.e. deployment cost and network latency, are considered simultaneously. In order to solve this new multi-objective problem effectively, we adopted the framework of binary Particle Swarm Optimization (PSO) due to its efficacy that has been demonstrated in many opti...

full text

Fuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring

There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 10  issue 4

pages  43- 68

publication date 2017-10-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023