Optimizing of Steel Fiber Reinforced Concrete Mix Design

Authors

  • L. Belgara Civil Engineering, University of Sains Malaysia
  • M. Beddar Civil Engineering, University of Sains Malaysia
  • T. Ayadat Civil Engineering, University of Sains Malaysia
Abstract:

Cementitious matrices are the fragile materials that possess a low tensile strength. The addition of fibers randomly distributed in these matrices improves their resistance to cracking, substantially. However, the incorporation of fibers into a plain concrete disrupts the granular skeleton and quickly causes problems of mixing as a result of the loss of mixture workability that will be translated into a difficult concrete casting in site. This study was concerned on the one hand with optimizing the fibers reinforced concrete mixes in the fresh state, and on the other hand with assessing the mechanical behavior of this mixture in the hardened state, in order to establish a compromise between the two states. In the first part of this paper, an experimental study of an optimization method of fibers reinforced concrete while taking into account of some parameters related to the matrix e.g. volume of the admixture, volume of incorporated fibers and the volume of water and, cement (W, C) in function of workability time are presented. Finally, test specimens of mixture optimized by this method have been tested in compression and tension due to bending. The results have been compared with those of mixture test specimens optimized by Baron – Lesage method.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Some Studies on Steel Fiber Reinforced Concrete

Fibres are generally used as resistance of cracking and strengthening of concrete. In this project, I am going to carry out test on steel fibre reinforced concrete to check the influence of fibres on flexural strength of concrete. According to various research papers, it has been found that steel fibres give the maximum strength in comparison to glass and polypropylene fibres. Hence, in this pr...

full text

Comparative Study of Steel and Glass Fiber Reinforced Concrete Composites

Concrete is most widely used construction material in the world. Fiber reinforced concrete (FRC) is a concrete in which small and discontinuous fibers are dispersed uniformly. The fibers used in FRC may be of different materials like steel, G.I., carbon, glass, aramid, asbestos, polypropylene, jute etc. The addition of these fibers into concrete mass can dramatically increase the compressive st...

full text

A micromorphic model for steel fiber reinforced concrete.

A new formulation to model the mechanical behavior of high performance fiber reinforced cement composites with arbitrarily oriented short fibers is presented. The formulation can be considered as a two scale approach, in which the macroscopic model, at the structural level, takes into account the mesostructural phenomenon associated with the fiber-matrix interface bond/slip process. This phenom...

full text

The Elastic Modulus of Steel Fiber Reinforced Concrete (SFRC) with Random Distribution of Aggregate and Fiber

The present paper offers a meso-scale numerical model to investigate the effects of random distribution of aggregate particles and steel fibers on the elastic modulus of Steel Fiber Reinforced Concrete (SFRC). Meso-scale model distinctively models coarse aggregate, cementitious mortar, and Interfacial Transition Zone (ITZ) between aggregate, mortar, and steel fibers with their respective materi...

full text

Retrofitting of Reinforced Concrete Beams with Steel Fiber Reinforced Composite Jackets

In the present study, a new method for retrofitting reinforced concrete beam is introduced in which steel-concrete composite jackets containing steel fiber is used. For this purpose, 75% of the peripheral surface of reinforced concrete beams was initially reinforced using steel plates and bolts, and steel fiber reinforced concrete was used between the steel plates and the peripheral surfaces of...

full text

Mechanical Behavior of Steel Fiber-Reinforced Concrete Beams Bonded with External Carbon Fiber Sheets

This study investigates the mechanical behavior of steel fiber-reinforced concrete (SFRC) beams internally reinforced with steel bars and externally bonded with carbon fiber-reinforced polymer (CFRP) sheets fixed by adhesive and hybrid jointing techniques. In particular, attention is paid to the load resistance and failure modes of composite beams. The steel fibers were used to avoiding the rip...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 17  issue 1

pages  41- 50

publication date 2004-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023