Optimized Design of Multiplexor by Quantum-dot CellularAutomata

Authors

  • M. Kianpour Electrical Engineering Department, Islamic Azad University, Central Tehran Branch, Tehran, I. R. Iran
  • R. Sabbaghi-Nadooshan Electrical Engineering Department, Islamic Azad University, Central Tehran Branch, Tehran, I. R. Iran
Abstract:

Quantum-dot Cellular Automata (QCA) has low power consumption and high density and regularity. QCA widely supports the new devices designed for nanotechnology. Application of QCA technology as an alternative method for CMOS technology on nano-scale shows a promising future. This paper presents successful designing, layout and analysis of Multiplexer with a new structure in QCA technique. In this paper we generalize a 2 to 1 multiplexer, which is used as module to implement the 2n to 1 multiplexer. In this paper, we will present successful simulation of the 2 to 1, 4 to 1 and 8 to 1 multiplexer with QCA Designer. We will design a new multiplexer based on the majority gate with the minimum number of cells and consumed area. Being potentially pipeline, the QCA technology calculates with the maximum operating speed. We may usethese multiplexers in the FPGA and ALU.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

optimized design of multiplexor by quantum-dot cellularautomata

quantum-dot cellular automata (qca) has low power consumption and high density and regularity. qca widely supports the new devices designed for nanotechnology. application of qca technology as an alternative method for cmos technology on nano-scale shows a promising future. this paper presents successful designing, layout and analysis of multiplexer with a new structure in qca technique. in thi...

full text

Design of Optimized Quantum-dot Cellular Automata RS Flip Flops

   Complementary metal-oxide semiconductor (CMOS) technology has been the industry standard to implement Very Large Scale Integrated (VLSI) devices for the last two decades. Due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption), it is essential to replace them with a new technology. Quantum-dot c...

full text

design of optimized quantum-dot cellular automata rs flip flops

complementary metal-oxide semiconductor (cmos) technology has been the industry standard to implement very large scale integrated (vlsi) devices for the last two decades. due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption), it is essential to replace them with a new technology. quantum-dot cellular...

full text

Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata

Application of quantum-dot is a promising technology for implementing digital systems at nano-scale.  Quantum-dot Cellular Automata (QCA) is a system with low power consumption and a potentially high density and regularity. Also, QCA supports the new devices with nanotechnology architecture. This technique works </...

full text

Improved Temperature Performance of 1.31- m Quantum Dot Lasers by Optimized Ridge Waveguide Design

In this letter, we demonstrate the importance of the fabricated device structure for the external differential efficiency, threshold current density, and maximum operating temperature for ground state operation of a 1.31m quantum dot laser. The introduction of a shallow ridge etch design and selective electroplating of the gold bondpads is demonstrated to offer improved performance in compariso...

full text

Fault-tolerant adder design in quantum-dot cellular automata

Quantum-dot cellular automata (QCA) are an emerging technology and a possible alternative for faster speed, smaller size, and low power consumption than semiconductor transistor based technologies. Previously, adder designs based on conventional designs were examined for implementation with QCA technology. This paper utilizes the QCA characteristics to design a fault-tolerant adder that is more...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 9  issue 1

pages  15- 24

publication date 2013-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023