OPTIMIZATION TO IDENTIFY MUSKINGUM MODEL PARAMETERS USING IMPERIALIST COMPETITIVE ALGORITHM
Authors
Abstract:
In engineering, flood routing is an important technique necessary for the solution of a floodcontrol problem and for the satisfactory operation of a flood-prediction service. A simple conceptual model like the Muskingum model is very effective for the flood routing process. One challenge in application of the Muskingum model is that its parameters cannot be measured physically. In this article we proposed imperialist competitive algorithm (ICA) for optimal parameter estimation of the linear Muskingum model. This algorithm uses imperialism and imperialistic competition process as a source of inspiration. Optimization to identify Muskingum model parameters can be considered as a suitable field to investigate the efficiency of this algorithm.
similar resources
Using Imperialist competitive algorithm optimization in multi-response nonlinear programming
The quality of manufactured products is characterized by many controllable quality factors. These factors should be optimized to reach high quality products. In this paper we try to find the controllable factors levels with minimum deviation from the target and with a least variation. To solve the problem a simple aggregation function is used to aggregate the multiple responses functions then a...
full textOptimization of Fabric Layout by Using Imperialist Competitive Algorithm
In textile industry, marker planning is one of the main operations in the cutting fabric stage. Marker packing is usually used to maximize cloth exploitation and minimize its waste. In this research, a method is used based on new found meta-heuristic imperialist competitive algorithm (ICA) and Bottom-Left-Fill Algorithm (BLF) to achieve optimal marker packing. Function of the proposed method wa...
full textSOLVING BLASIUS EQUATION USING IMPERIALIST COMPETITIVE ALGORITHM
In this study, a new approach isintroduced to solve Blasius differential equation using of ImperialistCompetitive Algorithm (ICA). This algorithm is inspired by competitionmechanism among Imperialists and colonies and has demonstrated excellent capabilitiessuch as simplicity, accuracy, faster convergence and better global optimumachievement in contrast to other evolutionary algorithms. The obta...
full textUsing Imperialist Competitive Algorithm in Optimization of Nonlinear Multiple Responses
The quality of manufactured products is characterized by many controllable quality factors. These factors should be optimized to reach high quality products. In this paper we try to find the controllable factor’s levels with minimum deviation from their target and with a least variation. To solve such problems a simple aggregation function is used to aggregate the multiple response functions fo...
full textStock Portfolio-Optimization Model by Mean-Semi-Variance Approach Using of Firefly Algorithm and Imperialist Competitive Algorithm
Selecting approaches with appropriate accuracy and suitable speed for the purpose of making decision is one of the managers’ challenges. Also investing decision is one of the main decisions of managers and it can be referred to securities transaction in financial markets which is one of the investments approaches. When some assets and barriers of real world have been considered, optimization of...
full textMOEICA: Enhanced multi-objective optimization based on imperialist competitive algorithm
In this paper, a multi-objective enhanced imperialist competitive algorithm (MOEICA) is presented. The main structures of the original ICA are employed while some novel approaches are also developed. Other than the non-dominated sorting and crowding distance methods which are used as the main tools for comparing and ranking solutions, an auxiliary comparison approach called fuzzy possession is ...
full textMy Resources
Journal title
volume 1 issue 3
pages 475- 484
publication date 2011-09
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023