Optimization of Specific Power of Surface Mounted Axial Flux Permanent Magnet Brushless DC Motor for Electrical Vehicle Application

Authors

  • A. N. Patel Electrical Engineering Department, Institute of Technology, Nirma University, India.
  • B. N. Suthar Electrical Engineering Department, Government Engineering College, India.
Abstract:

Optimization of specific power of axial flux permanent magnet brushless DC (PMBLDC) motor based on genetic algorithm optimization technique for an electric vehicle application is presented. Double rotor sandwiched stator topology of axial flux permanent magnet brushless DC motor is selected considering its best suitability in electric vehicle applications. Rating of electric motor is determined based on vehicular dynamics and application needs. Double rotor sandwiched stator axial flux PMBLDC motor is designed considering various assumed design variables. Initially designed axial flux PMBLDC motor is considered as a reference motor for further analysis. Optimization of the specific power of electric motor for electric vehicle applications is a very important design issue. The Genetic Algorithm (GA) based optimization technique is proposed for optimization of specific power of axial flux permanent magnet brushless DC motor. Optimization with an objective of maximum specific power with the same torque rating is performed. Three-dimensional finite element analysis is performed to validate the proposed GA based specific power optimization. Close agreement between results obtained from finite element analysis and analytical design establishes the correctness of the proposed optimization technique. The performance of the improved motor is compared with the initially designed reference motor. It is analyzed that the specific power of axial flux PMBLDC motor is enhanced effectively with the application of GA based design optimization technique.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Design Optimization of Axial Flux Surface Mounted Permanent Magnet Brushless DC Motor For Electrical Vehicle Based on Genetic Algorithm

This paper presents the design optimization of axial flux surface mounted Permanent Magnet Brushless DC motor based on genetic algorithm for an electrical vehicle application. The rating of the motor calculated form vehicle dynamics is 250 W, 150 rpm. The axial flux surface mounted Permanent Magnet Brushless DC (PMBLDC) motor was designed to fit in the rim of the wheel. There are several design...

full text

Design, Optimization and FEM Analysis of a Surface-Mounted Permanent-magnet Brushless DC Motor

In this paper a fast analytical algorithm for design a surface-mounted PM Brushless DC motor (SMPM-BLDC) for variable-speed application based on electromagnetic field analysis and RSM optimization algorithm is discussed. To achieve the desired performance, the physical dimensions of the proposed SMPM-BLDC motor subject to minimal ripple torque utilizing RSM optimization algorithm were optimized...

full text

Design and optimization of dc brushless permanent magnet motor

Electric motors that have found wide application in various sectors of industry Have unique features such as high reliability, high efficiency, quick acceleration and have small sizes. Brushless DC motors meet these requirements well. In this study, the design of a brushless DC motor speed limits for the particular application at 1800 rpm that can be equivalent to 140 watts output was provided....

full text

Cogging Torque Reduction of Sandwiched Stator Axial Flux Permanent Magnet Brushless DC Motor using Magnet Notching Technique

Cogging torque reduction of axial flux permanent magnet brushless dc (PMBLDC) motor is an important issue which demands attention of machine designers during design process. This paper presents magnet notching technique to reduce cogging torque of axial flux PMBLDC motor designed for electric vehicle application. Reference axial flux PMBLDC motor of 250 W, 150 rpm is designed with 48 stator slo...

full text

Optimal Design of Axial Flux Permanent Magnet Synchronous Motor for Electric Vehicle Applications Using GAand FEM

Axial Flux Permanent Magnet (AFPM) machines are attractive candidates for Electric Vehicles (EVs) applications due to their axial compact structure, high efficiency, high power and torque density. This paper presents general design characteristics of AFPM machines. Moreover, torque density of the machine which is selected as main objective function, is enhanced by using Genetic Algorithm (GA) a...

full text

Design Optimization of Permanent Magnet Brushless Dc Motor

This paper presents performance analysis of permanent magnet brush less dc motor (BLDC) using FEA based CAD package MagNet 6.13.First the characteristics of the standard BLDC motor is analysed. Then the design modifications are introduced and the performance of the machine is analysed. Based on the results optimum design is obtained.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 3

pages  363- 370

publication date 2020-09

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023