Optimization of Quantum Cellular Automata Circuits by Genetic Algorithm

Authors

  • E. Rahimi Faculty of Electrical & Robotic Engineering, Shahrood University of Technology
  • F. Jafarinejad Faculty of Computer Engineering, Shahrood University of Technology
  • M. Parvane Faculty of Electrical & Robotic Engineering, Shahrood University of Technology
Abstract:

Quantum cellular automata (QCA) enables performing arithmetic and logic operations at the molecular scale. This nanotechnology promises high device density, low power consumption and high computational power. Unlike the CMOS technology where the ON and OFF states of the transistors represent binary information, in QCA, data is represented by the charge configuration. The primary and basic device in this paradigm is the three-input majority gate, thus in QCA, the conventional AND-OR mapping for implementation of logic functions is not effective. We introduce four primitive admissible geometric patterns,  which aid in the identification of majority functions. For a non-majority function, a genetic algorithm (GA) is used to map the function to at most four majority gates in a wide range of implementations. We show that the emergence of specific genes will result in a further reduction in the number of majority gates in the network. The GA is intrinsically parallel and results in variety of implementations, which allows  merging the layout and logic levels of the design and provides an important approach towards designing high-performance QCA circuits.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Robot Path Planning Using Cellular Automata and Genetic Algorithm

In path planning Problems, a complete description of robot geometry, environments and obstacle are presented; the main goal is routing, moving from source to destination, without dealing with obstacles. Also, the existing route should be optimal. The definition of optimality in routing is the same as minimizing the route, in other words, the best possible route to reach the destination. In most...

full text

Design of sequential circuits by quantum-dot cellular automata

This paper proposes a detailed design analysis of sequential circuits for quantum-dot cellular automata (QCA). This analysis encompasses flip-flop (FF) devices as well as circuits. Initially, a novel RS-type FF amenable to a QCA implementation is proposed. This FF extends a previous threshold-based configuration to QCA by taking into account the timing issues associated with the adiabatic switc...

full text

Exploring and Exploiting Quantum-Dot Cellular Automata

The Full Adders (FAs) constitute the essential elements of digital systems, in a sense that they affect the circuit parameters of such systems. With respect to the MOSFET restrictions, its replacement by new devices and technologies is inevitable. QCA is one of the accomplishments in nanotechnology nominated as the candidate for MOSFET replacement. In this article 4 new layouts are presente...

full text

Design of Optimized Quantum-dot Cellular Automata RS Flip Flops

   Complementary metal-oxide semiconductor (CMOS) technology has been the industry standard to implement Very Large Scale Integrated (VLSI) devices for the last two decades. Due to the consequences of miniaturization of such devices (i.e. increasing switching speeds, increasing complexity and decreasing power consumption), it is essential to replace them with a new technology. Quantum-dot c...

full text

Novel Design of n-bit Controllable Inverter by Quantum-dot Cellular Automata

Application of quantum-dot is a promising technology for implementing digital systems at nano-scale.  Quantum-dot Cellular Automata (QCA) is a system with low power consumption and a potentially high density and regularity. Also, QCA supports the new devices with nanotechnology architecture. This technique works </...

full text

Design of Arithmetic Circuits in Quantum Dot Cellular Automata Nanotechnology

Reading is a hobby to open the knowledge windows. Besides, it can provide the inspiration and spirit to face this life. By this way, concomitant with the technology development, many companies serve the e-book or book in soft file. The system of this book of course will be much easier. No worry to forget bringing the design of arithmetic circuits in quantum dot cellular automata nanotechnology ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 33  issue 2

pages  229- 236

publication date 2020-02-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023