Optimization of Candida rugosa lipase immobilization parameters on magnetic silica aerogel using adsorption method

Authors

Abstract:

Magnetic silica aerogel in hydrophobic and hydrophilic forms were used as support to immobilize Candida rugosa lipase by adsorption method. Response surface methodology (RSM) was employed to study the effects of the three most important immobilization parameters, namely enzyme/support ratio (0.3-0.5, w/w), immobilization time (60-120 min) and alcohol percentage (20-40, %v/v) on the specific activity of immobilized lipase on the hydrophobic supports. For hydrophilic supports, alcohol percentage was removed as there was no need for pre-wetting step in enzyme immobilization process. Second order regression models with high coefficient determination (R2) values of higher than 0.98 were fitted to predict the response as function of immobilization parameters. The results indicated that for hydrophobic supports, optimum values for enzyme/support ratio, immobilization time and alcohol percentage were obtained at 0.45 (w/w), 94.27 min and 38.81 %, respectively, in which specific activity were predicted at 15.32 U/mg-protein. For hydrophilic supports, the optimum enzyme/support ratio and immobilization time were predicted at 0.47 (w/w) and 83.47 min, respectively. Specific activity in these conditions were obtained 11.21 U/mg-protein. As the difference between the experimental and predicted values was showed as non-significant, the response surface models employed could be considered as adequate.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Optimization of Biodiesel Production Using Immobilized Candida Rugosa Lipase on Magnetic Fe3O4-Silica Aerogel

Hydrophobic magnetic silica aerogel was used as a support to immobilize Candida rugosa lipase by adsorption method. Physical and chemical properties of the support and immobilized lipase were determined by Field Emission Scanning Electron Microscope (FESEM), Brunauer–Emmett–Teller (BET) analysis and Fourier Transform InfraRed (FT-IR) spectroscopy and the results showed that the lipase was s...

full text

Immobilization of Candida rugosa lipase on hydrophobic/strong cation-exchange functional silica particles for biocatalytic synthesis of phytosterol esters.

In this work, mixed-mode silica particles functionalized with octyl and sulfonic acid groups was conveniently prepared by co-bonding a mixture of n-octyltriethoxysilane and 3-mercaptopropyltriethoxysilane and then oxidized with hydrogen peroxide. Candida rugosa lipase (CRL) was immobilized on the mixed-mode silica particles via hydrophobic and strong cation-exchange interaction. The resulting i...

full text

Optimization of Lipase Immobilization

Pseudomonas aeruginosa BBRC-10036 was used for lipase production. The organism secreted the enzyme extracellulary. In order to purify the enzyme, precipitation was done first, and then this lipase has been purified by Ion exchange Chromatography leading to 2.3-fold purification and 11.47% recovery. Lipase from P.aeruginosa was entrapped into Ca-alginate gel beads and effect of independent varia...

full text

Immobilization of lipase from Candida rugosa on synthetic polymer beads for use in the synthesis of fatty esters ABSTRACT Lipase from Candida rugosa

Lipase from Candida rugosa was immobilized on three different supports, i.e. Amberlite XAD7, poly(methylmethacrylate) (PMMA) and celite. With the conditions tested, maximum adsorption can be achieved after 30 min. The activities of the immobilized lipases were determined by the esterification reaction of oleic acid and butanol. The immobilized lipases were found to be very effective in the este...

full text

Immobilization of Candida rugosa lipase on MCM-41 for the transesterification of cotton seed oil.

Present study demonstrated the preparation of MCM-41 as a support for the immobilization of Candida rugosa lipase by the physical adsorption technique. The lipase immobilized MCM-41 has been characterized by scanning electron microscopic and FTIR techniques. At pH 6, maximum lipase immobilization (250 mg/g) on MCM support has been observed and the immobilized lipase was employed as biocatalyst ...

full text

Isolation of Candida rugosa lipase isoforms

The yeast Candida rugosa is a convenient source of lipases for science and industry. Crude preparation of Candida rugosa lipase (CRL) consists of several extracellular lipases. Isoenzyme profile depends on the culture or fermentation conditions. All isoforms are coded by the lip pseudogene family; they are monomers of 534 amino acids and molecular weight of about 60 kDa. They share the same cat...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 13  issue 3

pages  19- 31

publication date 2016-07-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023