Optimal Shaping of Non-Conventional Permanent Magnet Geometries for Synchronous Motors via Surrogate Modeling and Multi-Objective Optimization Approach

Authors

  • A. Nobahari School of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 13114-16846, Iran.
  • A. Vahedi School of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 13114-16846, Iran.
  • M. R. Mosavi School of Electrical Engineering, Iran University of Science and Technology, Narmak, Tehran 13114-16846, Iran.
Abstract:

A methodology is proposed for optimal shaping of permanent magnets with non-conventional and complex geometries, used in synchronous motors. The algorithm includes artificial neural network-based surrogate model and multi-objective search based optimization method that will lead to Pareto front solutions. An interior permanent magnet topology with crescent-shaped magnets is also introduced as the case study, on which the proposed optimal shaping methodology is applied. Produced torque per magnets mass and percentage torque ripple are considered as the objectives, in order to take both performance and cost into account. Multi-layer perceptron architecture used to create the approximated model is trained to fit the samples collected via time-stepping finite element simulations. The methodology can be easily generalized to offer a fast and accurate method to optimally define arbitrary permanent magnet shape parameters in various synchronous motors.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Optimization of Current Excitation for Permanent Magnet Linear Synchronous Motors

The main problem in improving the tracking performance of permanent magnet linear synchronous motors is the presence of force ripple caused by mismatched current excitation. This paper presents a method to optimize the current excitation of the motors in order to generate smooth force. The optimized phase current waveforms produce minimal ohmic losses and maximize motor efficiency. The current ...

full text

Using Modular Pole for Multi-Objective Design Optimization of a Linear Permanent Magnet Synchronous Motor by Particle Swarm Optimization (PSO)

In this paper particle swarm optimization (PSO) is used for a design optimization of a linear permanent magnet synchronous motor (LPMSM) considering ultra low thrust force ripples, low magnet consumption, improved efficiency and thrust. The influence of PM material is discussed, too and the modular poles are proposed to achieve the best characteristic. PM dimensions and material, air gap and mo...

full text

Optimal Design of Permanent Magnet Arrangement in Synchronous Motors

A general pattern, which can include different types of permanent magnet (PM) arrangement in PM synchronous motors (PMSMs) is presented. By varying the geometric parameters of the general pattern, the template can automatically produce different types of PM arrangement in the rotor. By choosing the best arrangement of PMs using optimization method, one can obtain a better performance and lower ...

full text

Modeling of Iron Losses of Permanent-Magnet Synchronous Motors

Permanent-magnet (PM) motors offer potential energy savings as compared with induction motors because of the virtual elimination of rotor loss and the reduction of stator loss from operation near unity power factor. In PM machines, iron losses form a significant fraction of the total loss partly due to the nonsinusoidal flux density distribution. Design optimization therefore requires good mean...

full text

Digital Control of Permanent Magnet Synchronous Motors

Permanent Magnet Synchronous Motor (PMSM) variable-speed drive is widely used in the industry because of its particularly high mechanical power density, simplicity and cost effectiveness. Eliminating the mechanical sensor mounted on the shaft of the motors gives further improvement. These drives are referred to as “sensorless” electrical drives. In this paper a novel sensorless algorithm is pro...

full text

Nonlinear Model of Permanent-Magnet Synchronous Motors

Jun-qiang Lian, Shun-yi Xie , Wang Jian,Ping Hu Department of Weaponry Engineering., Naval University of Engineering, Wuhan 430033, China [email protected] Department of Weaponry Engineering., Naval University of Engineering, Wuhan 430033, China Higher Education Research Units., Naval University of Engineering, Wuhan 430033, China Department of Weaponry Engineering., Naval University of Engineer...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 16  issue 1

pages  114- 121

publication date 2020-03

By following a journal you will be notified via email when a new issue of this journal is published.

Keywords

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023