Optimal results for a time-fractional inverse diffusion problem under the Hölder type source condition

Authors

  • H. Cheng School of Science‎, ‎Jiangnan University‎, ‎Wuxi 214122‎, ‎Jiangsu Province‎, ‎P‎. ‎R‎. ‎China
  • J. Gao School of Science‎, ‎Jiangnan University‎, ‎Wuxi 214122‎, ‎Jiangsu Province‎, ‎P‎. ‎R‎. ‎China
  • P. Zhu School of Science‎, ‎Jiangnan University‎, ‎Wuxi 214122‎, ‎Jiangsu Province‎, ‎P‎. ‎R‎. ‎China
Abstract:

‎In the present paper we consider a time-fractional inverse diffusion problem‎, ‎where data is given at $x=1$ and the solution is required in the interval $0

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

optimal results for a time-fractional inverse diffusion problem under the hölder type source condition

‎in the present paper we consider a time-fractional inverse diffusion problem‎, ‎where data is given at $x=1$ and the solution is required in the interval $0

full text

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Spectral Optimization Methods for the Time Fractional Diffusion Inverse Problem

An inverse problem of reconstructing the initial condition for a time fractional diffusion equation is investigated. On the basis of the optimal control framework, the uniqueness and first order necessary optimality condition of the minimizer for the objective functional are established, and a time-space spectral method is proposed to numerically solve the resulting minimization problem. The co...

full text

Existence and uniqueness in an inverse source problem for a one-dimensional time-fractional diffusion equation

In this study, an inverse source problem for a one-dimensional timefractional diffusion equation is considered. An existence theorem based on the minimization of an error functional between the output data and the additional data is proved. Then it is showed that the unknown source function can be determined uniquely by an additional data u(0, t), 0 ≤ t ≤ T using an auxiliary uniqueness result ...

full text

Fourier Truncation Method for an Inverse Source Problem for Space-time Fractional Diffusion Equation

In this article, we study an inverse problem to determine an unknown source term in a space time fractional diffusion equation, whereby the data are obtained at a certain time. In general, this problem is ill-posed in the sense of Hadamard, so the Fourier truncation method is proposed to solve the problem. In the theoretical results, we propose a priori and a posteriori parameter choice rules a...

full text

On the Inverse Problem for a Fractional Diffusion Equation

We consider the inverse problem of finding the temperature distribution and the heat source whenever the temperatures at the initial time and the final time are given. The problem considered is one dimensional and the unknown heat source is supposed to be space dependent only. The existence and uniqueness results are proved.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 41  issue 4

pages  825- 834

publication date 2015-08-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023