One-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
author
Abstract:
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of minimum distance in several cases and get many records that don’t exist in MinT tables (tables of optimal parameters for linear codes), such as codes over F72 of dimension less than 36. Moreover, using maximal Hermitian curves and their sub-covers, we obtain a necessary and sufficient condition for self-orthogonality and Hermitian self-orthogonally of CL(D, G).
similar resources
Quantum error-correcting codes from algebraic curves
This chapter discusses quantum error-correcting codes constructed from algebraic curves. We give an introduction to quantum coding theory including bounds on quantum codes. We describe stabilizer codes which are the quantum analog of classical linear codes and discuss the binary and q-ary CSS construction. Then we focus on quantum codes from algebraic curves including the projective line, Hermi...
full textSome good quantum error-correcting codes from algebraic-Geometric codes
It is shown that the quantum error-correction can be acheived by the using of classical binary codes or additive codes over F4 (see [1],[2],[3]). In this paper with the help of some algebraic techniques the theory of algebraic-geometric codes is used to construct asymptotically good family of quantum error-correcting codes and other classes of good quantum error-correcting codes. Our results ar...
full textSome error-correcting codes and their applications
Error-correcting codes were first developed in the 1940s following a theorem of Claude Shannon [14] that showed that almost error-free communication could be obtained over a noisy channel. The message to be communicated is first “encoded”, i.e. turned into a codeword, by adding “redundancy”. The codeword is then sent through the channel and the received message is “decoded” by the receiver into...
full textQuantum Error Correcting Codes
This thesis deals with quantum error correcting codes. In first two chapters necessary introduction to quantum computation and classical error correction is presented. Previous results on construction of quantum error correcting codes are presented in the third and fourth chapter. Mainly Calderbank-Steane-Shor (CSS) codes and stabilizer codes are discussed together with the introduction to codi...
full textQuantum Error-correcting Codes
These notes are a record of proceedings in the QMW Combinat-orics Study Group in November and December 1998. Since we are discrete mathematicians and know little quantum theory, the notes are not strong on the physics background (but we give references to several sources for this). We have tried to compare quantum with classical error correction where possible, and to provide enough information...
full textQuantum Error-Correcting Codes
Markus GRASSL received his diploma degree in Computer Science in 1994 and his doctoral degree in 2001, both from the Fakultät für Informatik, Universität Karlsruhe (TH), Germany. From 1994 to 2007 he was a member of the Institut für Algorithmen und Kognitive Systeme, Fakultät für Informatik, Universität Karlsruhe (TH), Germany. From 2007 to 2008 he was with the Institute for Quantum Optics and ...
full textMy Resources
Journal title
volume 16 issue 1
pages 65- 76
publication date 2021-04
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023