On the Multiplicative Zagreb Indices of Bucket Recursive‎ ‎Trees

author

Abstract:

‎Bucket recursive trees are an interesting and natural‎ ‎generalization of ordinary recursive trees and have a connection‎ to mathematical chemistry‎. ‎In this paper‎, ‎we give the lower and upper bounds for the moment generating‎ ‎function and moments of the multiplicative Zagreb indices in a‎ ‎randomly chosen bucket recursive tree of size $n$ with maximal bucket size $bgeq1$‎. Also, ‎we consider the ratio of the multiplicative Zagreb‎ ‎indices for different values of $n$ and $b$‎. ‎All our results reduce to the ordinary recursive trees for $b=1$‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

Multiplicative Zagreb Indices of Trees

Let G be a graph with vertex set V (G) and edge set E(G) . The first and second multiplicative Zagreb indices of G are Π1 = ∏ x∈V (G) deg(x) 2 and Π2 = ∏ xy∈E(G) deg(x) deg(y) , respectively, where deg(v) is the degree of the vertex v . Let Tn be the set of trees with n vertices. We determine the elements of Tn , extremal w.r.t. Π1 and Π2 . AMS Mathematics Subject Classification (2000): 05C05, ...

full text

Multiplicative Zagreb indices of k-trees

Let G be a graph with vetex set V (G) and edge set E(G). The first generalized multiplicative Zagreb index of G is ∏ 1,c(G) = ∏ v∈V (G) d(v) , for a real number c > 0, and the second multiplicative Zagreb index is ∏ 2(G) = ∏ uv∈E(G) d(u)d(v), where d(u), d(v) are the degrees of the vertices of u, v. The multiplicative Zagreb indices have been the focus of considerable research in computational ...

full text

On multiplicative Zagreb eccentricity indices

Abstract Analogues to multiplicative Zagreb indices in this paper two new type of eccentricity related topological index are introduced called the first and second multiplicative Zagreb eccentricity indices and is defined as product of squares of the eccentricities of the vertices and product of product of the eccentricities of the adjacent vertices. In this paper we give some upper and lower b...

full text

The eccentric connectivity index of bucket recursive trees

If $G$ is a connected graph with vertex set $V$, then the eccentric connectivity index of $G$, $xi^c(G)$, is defined as $sum_{vin V(G)}deg(v)ecc(v)$ where $deg(v)$ is the degree of a vertex $v$ and $ecc(v)$ is its eccentricity. In this paper we show some convergence in probability and an asymptotic normality based on this index in random bucket recursive trees.

full text

On multiplicative Zagreb indices of graphs

Todeschini et al. have recently suggested to consider multiplicative variants of additive graph invariants, which applied to the Zagreb indices would lead to the multiplicative Zagreb indices of a graph G, denoted by ( ) 1  G and ( ) 2  G , under the name first and second multiplicative Zagreb index, respectively. These are define as     ( ) 2 1 ( ) ( ) v V G G G d v and ( ) ( ) ( ) ( ) 2...

full text

The Subtree Size Profile of Bucket Recursive Trees

Kazemi (2014) introduced a new version of bucket recursive trees as another generalization of recursive trees where buckets have variable capacities. In this paper, we get the $p$-th factorial moments of the random variable $S_{n,1}$ which counts the number of subtrees size-1 profile (leaves) and show a phase change of this random variable. These can be obtained by solving a first order partial...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 8  issue 1

pages  37- 45

publication date 2017-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023