On the Finite Groupoid G(n)
Authors
Abstract:
In this paper we study the existence of commuting regular elements, verifying the notion left (right) commuting regular elements and its properties in the groupoid G(n). Also we show that G(n) contains commuting regular subsemigroup and give a necessary and sufficient condition for the groupoid G(n) to be commuting regular.
similar resources
on the finite groupoid g(n)
in this paper we study the existence of commuting regular elements, verifying the notion left (right) commuting regular elements and its properties in the groupoid g(n) . also we show that g(n) contains commuting regular subsemigroup and give a necessary and sucient condition for the groupoid g(n) to be commuting regular.
full textOn Subgroupoid Lattices of Some Finite Groupoid
We investigate finite commutative groupoids G = 〈G, ◦〉 such that g ◦ h 6= g for all elements g, h of G. First, we show that for any such groupoid, its weak (i.e. partial) subgroupoid lattice uniquely determines its subgroupoid lattice. Next, we characterize the lattice of all weak subgroupoids of such a groupoid. This is a distributive finite lattice satisfying some combinatorial conditions con...
full textThe Monodromy Groupoid of a Lie Groupoid
R esum e: Nous d emontrons que, sous des circomstances g en erales, l'union disjoint des couvertes universales des etoiles d'un groupo de de Lie admet le structure d'un groupo de de Lie auquel que le projection a une propri et e de monodromie sur les extensions des morphismes emousse. Ca compl etes une conte d etailles des r esultats annonc es par J. Pradines. Introduction The notion of monodro...
full textMy Resources
Journal title
volume 02 issue 03
pages 153- 159
publication date 2013-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023