On the edge geodetic and edge geodetic domination numbers of a graph

author

  • Vladimir Samodivkin University of Architecture, Civil Еngineering and Geodesy; Department of Mathematics
Abstract:

In this paper, we study both concepts of geodetic dominatingand edge geodetic dominating sets and derive some tight upper bounds onthe edge geodetic and the edge geodetic domination numbers. We also obtainattainable upper bounds on the maximum number of elements in a partitionof a vertex set of a connected graph into geodetic sets, edge geodetic sets,geodetic dominating sets and edge geodetic dominating sets, respectively.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

The Upper Edge Geodetic Number and the Forcing Edge Geodetic Number of a Graph

An edge geodetic set of a connected graph G of order p ≥ 2 is a set S ⊆ V (G) such that every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum cardinality of its edge geodetic sets and any edge geodetic set of cardinality g1(G) is a minimum edge geodetic set of G or an edge geodetic basis of G. An edge geodetic set S in ...

full text

Algorithms to Find Linear Geodetic Numbers and Linear Edge Geodetic Numbers in Graphs

-Given two vertices u and v of a connected graph G=(V, E), the closed interval I[u, v] is that set of all vertices lying in some u-v geodesic in G. A subset of V(G) S={v1,v2,v3,....,vk} is a linear geodetic set or sequential geodetic set if each vertex x of G lies on a vi – vi+1 geodesic where 1 ≤ i < k . A linear geodetic set of minimum cardinality in G is called as linear geodetic number lgn(...

full text

The Restrained Edge Geodetic Number of a Graph

A set S of vertices of a connected graph G is a geodetic set if every vertex of G lies on an x−y geodesic for some elements x and y in S. The minimum cardinality of a geodetic set ofG is the geodetic number ofG, denoted by g(G). A set S of vertices of a graph G is an edge geodetic set if every edge of G lies on an x − y geodesic for some elements x and y in S. The minimum cardinality of an edge...

full text

The connected edge geodetic number of a graph

For a non-trivial connected graph G, a set S ⊆ V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum order of its edge geodetic sets and any edge geodetic set of order g1(G) is an edge geodetic basis. A connected edge geodetic set of G is an edge geodetic set S such that the ...

full text

The upper connected edge geodetic number of a graph

For a non-trivial connected graph G, a set S ⊆ V (G) is called an edge geodetic set of G if every edge of G is contained in a geodesic joining some pair of vertices in S. The edge geodetic number g1(G) of G is the minimum order of its edge geodetic sets and any edge geodetic set of order g1(G) is an edge geodetic basis. A connected edge geodetic set of G is an edge geodetic set S such that the ...

full text

Distinct edge geodetic decomposition in graphs

Let G=(V,E) be a simple connected graph of order p and size q. A decomposition of a graph G is a collection π of edge-disjoint subgraphs G_1,G_2,…,G_n of G such that every edge of G belongs to exactly one G_i,(1≤i ≤n). The decomposition 〖π={G〗_1,G_2,…,G_n} of a connected graph G is said to be a distinct edge geodetic decomposition if g_1 (G_i )≠g_1 (G_j ),(1≤i≠j≤n). The maximum cardinality of π...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  41- 54

publication date 2020-06-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023