On the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model

Authors

  • Mohammad Reza Hairi Yazdi School of Mechanical Engineering, University of Tehran, Tehran, Iran
  • Moosa Ayati School of Mechanical Engineering, University of Tehran, Tehran, Iran
  • Mostafa Rahnavard School of Mechanical Engineering, University of Tehran, Tehran, Iran
Abstract:

This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output error injection signal. A well-known validated wind turbine benchmark model, developed by Aalborg University and KK-electronic a/c, is utilized to evaluate the FDD scheme. Different sensors and actuator fault scenarios are simulated in the drive train, generator, and pitch & blade subsystems of the benchmark model, and attempts have been made to estimate these faults via the proposed modified SMO. The simulation results confirm the effectiveness of the proposed diagnosis scheme, and the faults are well detected, isolated, and reconstructed in the presence of the measurement noise.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

on the development of a sliding mode observer-based fault diagnosis scheme for a wind turbine benchmark model

this paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. the methodology is based on a modified sliding mode observer (smo) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. the faults are reconstructed using the equivalent output error i...

full text

On the development of a sliding mode observer- based fault diagnosis scheme for a wind turbine benchmark model

This paper addresses the design of an observer-based fault diagnosis scheme, which is applied to some of the sensors and actuators of a wind turbine benchmark model. The methodology is based on a modified sliding mode observer (SMO) that allows accurate reconstruction of multiple sensor or actuator faults occurring simultaneously. The faults are reconstructed using the equivalent output error i...

full text

Fault-tolerant model predictive control of a wind turbine benchmark

This paper aims to solve the fault tolerant control problem of a wind turbine benchmark. A hierarchical controller with model predictive pre-compensators, a global model predictive controller and a supervisory controller is proposed. In the model predictive pre-compensator, an extended Kalman Filter is designed to estimate the system states and various fault parameters. Based on the estimation,...

full text

Residual Generator Fuzzy Identification for Wind Turbine Benchmark Fault Diagnosis

In order to improve the availability of wind turbines, thus improving their efficiency, it is important to detect and isolate faults in their earlier occurrence. The main problem of model-based fault diagnosis applied to wind turbines is represented by the system complexity, as well as the reliability of the available measurements. In this work, a data-driven strategy relying on fuzzy models is...

full text

An Unknown Input Observer for Fault Detection Based on Sliding Mode Observer in Electrical Steering Assist Systems

Steering assist system controls the force transfer behavior of the steering system and improves the steering probability of the vehicle. Moreover, it is an interface between the diver and vehicle. Fault detection in electrical assisted steering systems is a challenging problem due to frequently use of these systems. This paper addresses the fault detection and reconstruction in automotive elect...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 5  issue 1

pages  13- 26

publication date 2017-03-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023