On the decomposable numerical range of operators

Authors

Abstract:

 ‎Let $V$ be an $n$-dimensional complex inner product space‎. ‎Suppose‎ ‎$H$ is a subgroup of the symmetric group of degree $m$‎, ‎and‎ ‎$chi‎ :‎Hrightarrow mathbb{C} $ is an irreducible character (not‎ ‎necessarily linear)‎. ‎Denote by $V_{chi}(H)$ the symmetry class‎ ‎of tensors associated with $H$ and $chi$‎. ‎Let $K(T)in‎ (V_{chi}(H))$ be the operator induced by $Tin‎ ‎text{End}(V)$‎. ‎The decomposable numerical range $W_{chi}(T)$ of‎ ‎$T$ is a subset of the classical numerical range‎ ‎$W(K(T))$ of $K(T)$ defined as‎:‎$$‎ ‎W_{chi}(T)={(K(T)x^{ast }‎, ‎x^{ast}):x^{ast } is a‎ ‎decomposable unit tensor}‎.‎$$‎ ‎In this paper‎, ‎we study the interplay between the geometric‎ ‎properties of $W_{chi}(T)$ and the algebraic properties of $T$‎. ‎In fact‎, ‎we extend some of the results of ‎[‎‎C‎. ‎K‎. ‎Li and A‎. ‎Zaharia‎, ‎Decomposable numerical range on‎ ‎orthonormal decomposable tensors‎, Linear Algebra Appl. 308 ‎(2000), no, 1-3, 139--152] ‎and ‎[‎‎C‎. ‎K‎. ‎Li and A‎. ‎Zaharia‎, ‎Induced operators on symmetry classes‎ ‎of tensors‎, ‎Trans‎. ‎Amer‎. ‎Math‎. ‎Soc. 354 (2002), no. 2, 807--836]‎, ‎to non-linear irreducible characters‎.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

on the decomposable numerical range of operators

‎let $v$ be an $n$-dimensional complex inner product space‎. ‎suppose‎ ‎$h$ is a subgroup of the symmetric group of degree $m$‎, ‎and‎ ‎$chi‎ :‎hrightarrow mathbb{c} $ is an irreducible character (not‎ ‎necessarily linear)‎. ‎denote by $v_{chi}(h)$ the symmetry class‎ ‎of tensors associated with $h$ and $chi$‎. ‎let $k(t)in‎ (v_{chi}(h))$ be the operator induced by $tin‎ ‎text{end}(v)$‎. ‎the...

full text

the algorithm for solving the inverse numerical range problem

برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.

15 صفحه اول

Linear Operators Preserving the Numerical Range ( Radius ) on Triangular

We characterize those linear operators on triangular or diagonal matrices preserving the numerical range or radius.

full text

Linear Operators Preserving the Numerical Range (Radius) on Triangular Matrices

We characterize those linear operators on triangular or diagonal matrices preserving the numerical range or radius.

full text

Numerical Range of Lie Product of Operators

Denote by W (A) the numerical range of a bounded linear operator A, and [A, B] = AB −BA the Lie product of two operators A and B. Let H, K be complex Hilbert spaces of dimension ≥ 2 and Φ : B(H) → B(K) be a map whose range contains all operators of rank ≤ 1. It is shown that Φ satisfies that W ([Φ(A), Φ(B)]) = W ([A, B]) for any A, B ∈ B(H) if and only if dim H = dim K, there exist ε ∈ {1,−1}, ...

full text

Some results on the block numerical range

The main results of this paper are generalizations of classical results from the numerical range to the block numerical range. A different and simpler proof for the Perron-Frobenius theory on the block numerical range of an irreducible nonnegative matrix is given. In addition, the Wielandt's lemma and the Ky Fan's theorem on the block numerical range are extended.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 40  issue 2

pages  387- 398

publication date 2014-04-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023