On Szeged Polynomial of a Graph
Authors
Abstract:
This article doesn't have abstract
similar resources
On the Roots of Hosoya Polynomial of a Graph
Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...
full textA Note on Revised Szeged Index of Graph Operations
Let $G$ be a finite and simple graph with edge set $E(G)$. The revised Szeged index is defined as $Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$ where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and $n_{G}(e)$ is the number of equidistant vertices of $e$ in $G$. In this paper...
full textSome New Results On the Hosoya Polynomial of Graph Operations
The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...
full texton the roots of hosoya polynomial of a graph
let g = (v, e) be a simple graph. hosoya polynomial of g isd(u,v)h(g, x) = {u,v}v(g)x , where, d(u ,v) denotes the distance between vertices uand v. as is the case with other graph polynomials, such as chromatic, independence anddomination polynomial, it is natural to study the roots of hosoya polynomial of a graph. inthis paper we study the roots of hosoya polynomials of some specific graphs.
full textThe Edge Szeged Polynomial of Graphs
The edge Szeged polynomial of a graph G is defined as Sze(G,x) = ( ) ( ) , u v m e m e e uv x = ∑ where mu(e) is the number of edges of G lying closer to u than to v and mv(e) is the number of edges of G lying closer to v than to u. In this paper the main properties of this newly proposed polynomial are investigated. We also compute this polynomial for some classes of well-known graphs. Finally...
full textMy Resources
Journal title
volume 33 issue No. 1
pages 37- 46
publication date 2011-01-20
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023