On Szeged Polynomial of a Graph

Authors

  • A. R. Ashrafi
  • B. Manoochehrian
  • H. Yousefi-Azari
Abstract:

This article doesn't have abstract

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

On the Roots of Hosoya Polynomial of a Graph

Let G = (V, E) be a simple graph. Hosoya polynomial of G is d(u,v) H(G, x) = {u,v}V(G)x , where, d(u ,v) denotes the distance between vertices u and v. As is the case with other graph polynomials, such as chromatic, independence and domination polynomial, it is natural to study the roots of Hosoya polynomial of a graph. In this paper we study the roots of Hosoya polynomials of some specific g...

full text

A N‎ote on Revised Szeged ‎Index of ‎Graph ‎Operations

Let $G$ be a finite and simple graph with edge set $E(G)$‎. ‎The revised Szeged index is defined as‎ ‎$Sz^{*}(G)=sum_{e=uvin E(G)}(n_u(e|G)+frac{n_{G}(e)}{2})(n_v(e|G)+frac{n_{G}(e)}{2}),$‎ ‎where $n_u(e|G)$ denotes the number of vertices in $G$ lying closer to $u$ than to $v$ and‎ ‎$n_{G}(e)$ is the number of‎ ‎equidistant vertices of $e$ in $G$‎. ‎In this paper...

full text

Some New Results On the Hosoya Polynomial of Graph Operations

The Wiener index is a graph invariant that has found extensive application in chemistry. In addition to that a generating function, which was called the Wiener polynomial, who’s derivate is a q-analog of the Wiener index was defined. In an article, Sagan, Yeh and Zhang in [The Wiener Polynomial of a graph, Int. J. Quantun Chem., 60 (1996), 959969] attained what graph operations do to the Wiene...

full text

on the roots of hosoya polynomial of a graph

let g = (v, e) be a simple graph. hosoya polynomial of g isd(u,v)h(g, x) = {u,v}v(g)x , where, d(u ,v) denotes the distance between vertices uand v. as is the case with other graph polynomials, such as chromatic, independence anddomination polynomial, it is natural to study the roots of hosoya polynomial of a graph. inthis paper we study the roots of hosoya polynomials of some specific graphs.

full text

The Edge Szeged Polynomial of Graphs

The edge Szeged polynomial of a graph G is defined as Sze(G,x) = ( ) ( ) , u v m e m e e uv x = ∑ where mu(e) is the number of edges of G lying closer to u than to v and mv(e) is the number of edges of G lying closer to v than to u. In this paper the main properties of this newly proposed polynomial are investigated. We also compute this polynomial for some classes of well-known graphs. Finally...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 33  issue No. 1

pages  37- 46

publication date 2011-01-20

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023