On reverse degree distance of unicyclic graphs
Authors
Abstract:
The reverse degree distance of a connected graph $G$ is defined in discrete mathematical chemistry as [ r (G)=2(n-1)md-sum_{uin V(G)}d_G(u)D_G(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $G$, respectively, $d_G(u)$ is the degree of vertex $u$, $D_G(u)$ is the sum of distance between vertex $u$ and all other vertices of $G$, and $V(G)$ is the vertex set of $G$. We determine the unicyclic graphs of given girth, number of pendant vertices and maximum degree, respectively, with maximum reverse degree distances. We also determine the unicyclic graphs of given number of vertices, girth and diameter with minimum degree distance.
similar resources
on reverse degree distance of unicyclic graphs
the reverse degree distance of a connected graph $g$ is defined in discrete mathematical chemistry as [ r (g)=2(n-1)md-sum_{uin v(g)}d_g(u)d_g(u), ] where $n$, $m$ and $d$ are the number of vertices, the number of edges and the diameter of $g$, respectively, $d_g(u)$ is the degree of vertex $u$, $d_g(u)$ is the sum of distance between vertex $u$ and all other vertices of $g$, and $v(g)$ is the ...
full textOn Reverse Degree Distance of Unicyclic Graphs
The reverse degree distance of a connected graph G is defined in discrete mathematical chemistry as D(G) = 2(n− 1)md− ∑
full textdegree resistance distance of unicyclic graphs
let $g$ be a connected graph with vertex set $v(g)$. the degree resistance distance of $g$ is defined as $d_r(g) = sum_{{u,v} subseteq v(g)} [d(u)+d(v)] r(u,v)$, where $d(u)$ is the degree of vertex $u$, and $r(u,v)$ denotes the resistance distance between $u$ and $v$. in this paper, we characterize $n$-vertex unicyclic graphs having minimum and second minimum degree resista...
full textDegree Resistance Distance of Unicyclic Graphs
Let G be a connected graph with vertex set V (G). The degree resistance distance of G is defined as DR(G) = ∑ fu,vg V (G)[d(u) +d(v)]R(u, v), where d(u) is the degree of vertex u, and R(u, v) denotes the resistance distance between u and v. In this paper, we characterize n-vertex unicyclic graphs having minimum and second minimum degree resistance distance.
full textUnicyclic and bicyclic graphs having minimum degree distance
In this paper characterizations of connected unicyclic and bicyclic graphs in terms of the degree sequence, as well as the graphs in these classes minimal with respect to the degree distance are given. © 2007 Elsevier B.V. All rights reserved.
full textMy Resources
Journal title
volume 39 issue 4
pages 681- 706
publication date 2013-09-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023